These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21937605)

  • 1. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption.
    Pan W; Borovac J; Spicer Z; Hoenderop JG; Bindels RJ; Shull GE; Doschak MR; Cordat E; Alexander RT
    Am J Physiol Renal Physiol; 2012 Apr; 302(8):F943-56. PubMed ID: 21937605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Na⁺/H⁺ exchanger isoform 3 is required for active paracellular and transcellular Ca²⁺ transport across murine cecum.
    Rievaj J; Pan W; Cordat E; Alexander RT
    Am J Physiol Gastrointest Liver Physiol; 2013 Aug; 305(4):G303-13. PubMed ID: 23764894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximal tubular NHEs: sodium, protons and calcium?
    Alexander RT; Dimke H; Cordat E
    Am J Physiol Renal Physiol; 2013 Aug; 305(3):F229-36. PubMed ID: 23761670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloride channel (Clc)-5 is necessary for exocytic trafficking of Na+/H+ exchanger 3 (NHE3).
    Lin Z; Jin S; Duan X; Wang T; Martini S; Hulamm P; Cha B; Hubbard A; Donowitz M; Guggino SE
    J Biol Chem; 2011 Jul; 286(26):22833-45. PubMed ID: 21561868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both NHERF3 and NHERF2 are necessary for multiple aspects of acute regulation of NHE3 by elevated Ca
    Avula LR; Chen T; Kovbasnjuk O; Donowitz M
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G81-G90. PubMed ID: 28882822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal NaCl transport in NHE2 and NHE3 knockout mice.
    Gawenis LR; Stien X; Shull GE; Schultheis PJ; Woo AL; Walker NM; Clarke LL
    Am J Physiol Gastrointest Liver Physiol; 2002 May; 282(5):G776-84. PubMed ID: 11960774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na
    Charoenphandhu N; Kraidith K; Lertsuwan K; Sripong C; Suntornsaratoon P; Svasti S; Krishnamra N; Wongdee K
    Mol Cell Biochem; 2017 Mar; 427(1-2):201-208. PubMed ID: 27995414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells.
    Coon S; Kekuda R; Saha P; Sundaram U
    Am J Physiol Cell Physiol; 2011 Mar; 300(3):C496-505. PubMed ID: 21148403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysophosphatidic acid stimulates the intestinal brush border Na(+)/H(+) exchanger 3 and fluid absorption via LPA(5) and NHERF2.
    Lin S; Yeruva S; He P; Singh AK; Zhang H; Chen M; Lamprecht G; de Jonge HR; Tse M; Donowitz M; Hogema BM; Chun J; Seidler U; Yun CC
    Gastroenterology; 2010 Feb; 138(2):649-58. PubMed ID: 19800338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.
    Beggs MR; Appel I; Svenningsen P; Skjødt K; Alexander RT; Dimke H
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F629-F640. PubMed ID: 28539338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ezrin is required for the functional regulation of the epithelial sodium proton exchanger, NHE3.
    Hayashi H; Tamura A; Krishnan D; Tsukita S; Suzuki Y; Kocinsky HS; Aronson PS; Orlowski J; Grinstein S; Alexander RT
    PLoS One; 2013; 8(2):e55623. PubMed ID: 23405179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3.
    Dominguez Rieg JA; de la Mora Chavez S; Rieg T
    Am J Physiol Regul Integr Comp Physiol; 2016 Dec; 311(6):R1186-R1191. PubMed ID: 27733387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger.
    Schultheis PJ; Clarke LL; Meneton P; Miller ML; Soleimani M; Gawenis LR; Riddle TM; Duffy JJ; Doetschman T; Wang T; Giebisch G; Aronson PS; Lorenz JN; Shull GE
    Nat Genet; 1998 Jul; 19(3):282-5. PubMed ID: 9662405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proximal tubule specific knockout of the Na⁺/H⁺ exchanger NHE3: effects on bicarbonate absorption and ammonium excretion.
    Li HC; Du Z; Barone S; Rubera I; McDonough AA; Tauc M; Zahedi K; Wang T; Soleimani M
    J Mol Med (Berl); 2013 Aug; 91(8):951-63. PubMed ID: 23508938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dexamethasone differentially regulates renal and duodenal calcium-processing genes in calbindin-D9k and -D28k knockout mice.
    Kim MH; Lee GS; Jung EM; Choi KC; Oh GT; Jeung EB
    Exp Physiol; 2009 Jan; 94(1):138-51. PubMed ID: 18931045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New functions and roles of the Na
    Dominguez Rieg JA; Rieg T
    Pflugers Arch; 2024 Apr; 476(4):505-516. PubMed ID: 38448727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice.
    Gkika D; Hsu YJ; van der Kemp AW; Christakos S; Bindels RJ; Hoenderop JG
    J Am Soc Nephrol; 2006 Nov; 17(11):3020-7. PubMed ID: 17005931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in intestinal calcium and phosphate transport between low and high bone density mice.
    Armbrecht HJ; Boltz MA; Hodam TL
    Am J Physiol Gastrointest Liver Physiol; 2002 Jan; 282(1):G130-6. PubMed ID: 11751166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary calcium and 1,25-dihydroxyvitamin D3 regulate transcription of calcium transporter genes in calbindin-D9k knockout mice.
    Ko SH; Lee GS; Vo TT; Jung EM; Choi KC; Cheung KW; Kim JW; Park JG; Oh GT; Jeung EB
    J Reprod Dev; 2009 Apr; 55(2):137-42. PubMed ID: 19106481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation of NHE3 and SGLT1 by the circadian clock protein Per1 in proximal tubule cells.
    Solocinski K; Richards J; All S; Cheng KY; Khundmiri SJ; Gumz ML
    Am J Physiol Renal Physiol; 2015 Dec; 309(11):F933-42. PubMed ID: 26377793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.