These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 2193766)

  • 21. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression patterns of Src-family tyrosine kinases during Xenopus laevis development.
    Ferjentsik Z; Sindelka R; Jonak J
    Int J Dev Biol; 2009; 53(1):163-8. PubMed ID: 19123139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Neural crest-specific and general expression of distinct metalloprotease-disintegrins in early Xenopus laevis development.
    Cai H; Krätzschmar J; Alfandari D; Hunnicutt G; Blobel CP
    Dev Biol; 1998 Dec; 204(2):508-24. PubMed ID: 9882486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis.
    Suzawa K; Yukita A; Hayata T; Goto T; Danno H; Michiue T; Cho KW; Asashima M
    Int J Dev Biol; 2007; 51(3):183-90. PubMed ID: 17486538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression pattern of an axolotl floor plate-specific fork head gene reflects early developmental differences between frogs and salamanders.
    Whiteley M; Mathers PH; Jamrich M
    Dev Genet; 1997; 20(2):145-51. PubMed ID: 9144925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus.
    Christen B; Slack JM
    Dev Biol; 1997 Dec; 192(2):455-66. PubMed ID: 9441681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. BP-3 alloantigen. A cell surface glycoprotein that marks early B lineage cells and mature myeloid lineage cells in mice.
    McNagny KM; Cazenave PA; Cooper MD
    J Immunol; 1988 Oct; 141(8):2551-6. PubMed ID: 3262662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis with monoclonal antibodies of the molecular and cellular heterogeneity of human high molecular weight melanoma associated antigen.
    Ziai MR; Imberti L; Nicotra MR; Badaracco G; Segatto O; Natali PG; Ferrone S
    Cancer Res; 1987 May; 47(9):2474-80. PubMed ID: 3552215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Major temporal and spatial patterns of gene expression during differentiation of the sea urchin embryo.
    Kingsley PD; Angerer LM; Angerer RC
    Dev Biol; 1993 Jan; 155(1):216-34. PubMed ID: 8416835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages.
    Huang S; Yan B; Sullivan SA; Moody SA
    Dev Dyn; 2007 Jan; 236(1):171-83. PubMed ID: 17096409
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Five novel monoclonal antibodies to thymic epithelial cell surface antigens in rats.
    Ma J; Iwaki H; Kikuchi K
    Chin Med J (Engl); 2002 Aug; 115(8):1186-90. PubMed ID: 12215289
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages.
    Rougon G; Alterman LA; Dennis K; Guo XJ; Kinnon C
    Eur J Immunol; 1991 Jun; 21(6):1397-402. PubMed ID: 2044653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneity of expression of apical membrane determinants in A6 epithelial cells.
    Moberly JB; Fanestil DD
    Am J Physiol; 1987 Jul; 253(1 Pt 1):C37-44. PubMed ID: 3300361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell-type-specific expression of epidermal cytokeratin genes during gastrulation of Xenopus laevis.
    Jamrich M; Sargent TD; Dawid IB
    Genes Dev; 1987 Apr; 1(2):124-32. PubMed ID: 2445625
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A monoclonal antibody specific for an epidermal cell antigen of Xenopus laevis: electron microscopic observations using a gold-labeling method.
    Asada-Kubota M
    J Histochem Cytochem; 1988 May; 36(5):515-21. PubMed ID: 3356895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation.
    Klymkowsky MW; Shook DR; Maynell LA
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8736-40. PubMed ID: 1382297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The identification of a tissue-restricted plasma membrane marker in Xenopus laevis embryos by using a monoclonal antibody.
    Jones EA; Rughani AS
    Cell Differ; 1984 Apr; 14(1):73-83. PubMed ID: 6373020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pair-rule expression of a cell surface molecule during gastrulation of the moth embryo.
    Carr JN; Taghert PH
    Development; 1989 Sep; 107(1):143-51. PubMed ID: 2627891
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMA, an epithelial membrane-associated antigen during early development and morphogenesis ofXenopus laevis.
    Kiene B; Wedlich D
    Rouxs Arch Dev Biol; 1990 Nov; 199(3):164-168. PubMed ID: 28305543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developmental expression of regionally specific cell surface antigens in the Xenopus gastrula.
    Litvin J; Grant B; Davis L; King ML
    Dev Genet; 1990; 11(1):110-22. PubMed ID: 2193766
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.