These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 2193805)
1. The mechanisms for minimizing energy expenditure in human locomotion. Saibene F Eur J Clin Nutr; 1990; 44 Suppl 1():65-71. PubMed ID: 2193805 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical and physiological aspects of legged locomotion in humans. Saibene F; Minetti AE Eur J Appl Physiol; 2003 Jan; 88(4-5):297-316. PubMed ID: 12527959 [TBL] [Abstract][Full Text] [Related]
3. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: I. Organismal metabolism and biomechanics. Marsh RL; Ellerby DJ; Henry HT; Rubenson J J Exp Biol; 2006 Jun; 209(Pt 11):2050-63. PubMed ID: 16709908 [TBL] [Abstract][Full Text] [Related]
4. Biomechanics of locomotion in subgravity. Margaria R Life Sci Space Res; 1973; 11():177-85. PubMed ID: 12523382 [TBL] [Abstract][Full Text] [Related]
5. Mechanical energy in toddler gait. A trade-off between economy and stability? Hallemans A; Aerts P; Otten B; De Deyn PP; De Clercq D J Exp Biol; 2004 Jun; 207(Pt 14):2417-31. PubMed ID: 15184514 [TBL] [Abstract][Full Text] [Related]
6. Optimal speeds for walking and running, and walking on a moving walkway. Srinivasan M Chaos; 2009 Jun; 19(2):026112. PubMed ID: 19566272 [TBL] [Abstract][Full Text] [Related]
7. Reappraisal of the comparative cost of human locomotion using gait-specific allometric analyses. Rubenson J; Heliams DB; Maloney SK; Withers PC; Lloyd DG; Fournier PA J Exp Biol; 2007 Oct; 210(Pt 20):3513-24. PubMed ID: 17921153 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of the body centre of mass during actual acceleration across transition speed. Segers V; Aerts P; Lenoir M; De Clercq D J Exp Biol; 2007 Feb; 210(Pt 4):578-85. PubMed ID: 17267643 [TBL] [Abstract][Full Text] [Related]
9. The relationship between mechanical and physiological energy estimates. Williams KR Med Sci Sports Exerc; 1985 Jun; 17(3):317-25. PubMed ID: 3894868 [TBL] [Abstract][Full Text] [Related]
10. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods. Reilly SM; McElroy EJ; Biknevicius AR Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802 [TBL] [Abstract][Full Text] [Related]
11. Energetics of running: a new perspective. Kram R; Taylor CR Nature; 1990 Jul; 346(6281):265-7. PubMed ID: 2374590 [TBL] [Abstract][Full Text] [Related]
12. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207 [TBL] [Abstract][Full Text] [Related]
13. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow. Ellerby DJ; Marsh RL J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909 [TBL] [Abstract][Full Text] [Related]
14. Explaining differences in the metabolic cost and efficiency of treadmill locomotion in children. Frost G; Bar-Or O; Dowling J; Dyson K J Sports Sci; 2002 Jun; 20(6):451-61. PubMed ID: 12137175 [TBL] [Abstract][Full Text] [Related]
15. Models and the scaling of energy costs for locomotion. Alexander RM J Exp Biol; 2005 May; 208(Pt 9):1645-52. PubMed ID: 15855396 [TBL] [Abstract][Full Text] [Related]
16. Effects of stride frequency on mechanical power and energy expenditure of walking. Minetti AE; Capelli C; Zamparo P; di Prampero PE; Saibene F Med Sci Sports Exerc; 1995 Aug; 27(8):1194-202. PubMed ID: 7476065 [TBL] [Abstract][Full Text] [Related]
17. Centre of mass movement and mechanical energy fluctuation during gallop locomotion in the Thoroughbred racehorse. Pfau T; Witte TH; Wilson AM J Exp Biol; 2006 Oct; 209(Pt 19):3742-57. PubMed ID: 16985191 [TBL] [Abstract][Full Text] [Related]
18. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work. Biewener AA J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267 [TBL] [Abstract][Full Text] [Related]
19. Ergonomic effects of load carriage on the upper and lower back on metabolic energy cost of walking. Abe D; Muraki S; Yasukouchi A Appl Ergon; 2008 May; 39(3):392-8. PubMed ID: 17850760 [TBL] [Abstract][Full Text] [Related]
20. Preferred and energetically optimal gait transition speeds in human locomotion. Hreljac A Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]