These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469 [TBL] [Abstract][Full Text] [Related]
3. A practical and feasible control system for bifunctional myoelectric hand prostheses. Hamdi N; Dweiri Y; Al-Abdallat Y; Haneya T Prosthet Orthot Int; 2010 Jun; 34(2):195-205. PubMed ID: 20298128 [TBL] [Abstract][Full Text] [Related]
4. Kinematic comparison of the wrist movements that are possible with a biomechatronics wrist prosthesis and a body-powered prosthesis: a preliminary study. Abd Razak NA; Abu Osman NA; Wan Abas WA Disabil Rehabil Assist Technol; 2013 May; 8(3):255-60. PubMed ID: 22830946 [TBL] [Abstract][Full Text] [Related]
5. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. Scheme E; Englehart K J Rehabil Res Dev; 2011; 48(6):643-59. PubMed ID: 21938652 [TBL] [Abstract][Full Text] [Related]
6. Comparison of electromyography and force as interfaces for prosthetic control. Corbett EA; Perreault EJ; Kuiken TA J Rehabil Res Dev; 2011; 48(6):629-41. PubMed ID: 21938651 [TBL] [Abstract][Full Text] [Related]
7. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses. Li G; Schultz AE; Kuiken TA IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):185-92. PubMed ID: 20071269 [TBL] [Abstract][Full Text] [Related]
8. Satisfaction and problems experienced with wrist movements: comparison between a common body-powered prosthesis and a new biomechatronics prosthesis. Abd Razak NA; Abu Osman NA; Kamyab M; Wan Abas WA; Gholizadeh H Am J Phys Med Rehabil; 2014 May; 93(5):437-44. PubMed ID: 24429510 [TBL] [Abstract][Full Text] [Related]
9. Electromyogram-based neural network control of transhumeral prostheses. Pulliam CL; Lambrecht JM; Kirsch RF J Rehabil Res Dev; 2011; 48(6):739-54. PubMed ID: 21938659 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm. Losier Y; Englehart K; Hudgins B J Rehabil Res Dev; 2011; 48(6):669-78. PubMed ID: 21938654 [TBL] [Abstract][Full Text] [Related]
11. Target Achievement Control Test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses. Simon AM; Hargrove LJ; Lock BA; Kuiken TA J Rehabil Res Dev; 2011; 48(6):619-27. PubMed ID: 21938650 [TBL] [Abstract][Full Text] [Related]
12. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis. Hargrove L; Miller L; Turner K; Kuiken T J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):60. PubMed ID: 30255800 [TBL] [Abstract][Full Text] [Related]
13. Flexible and static wrist units in upper limb prosthesis users: functionality scores, user satisfaction and compensatory movements. Deijs M; Bongers RM; Ringeling-van Leusen ND; van der Sluis CK J Neuroeng Rehabil; 2016 Mar; 13():26. PubMed ID: 26979272 [TBL] [Abstract][Full Text] [Related]
14. System training and assessment in simultaneous proportional myoelectric prosthesis control. Fougner AL; Stavdahl O; Kyberd PJ J Neuroeng Rehabil; 2014 Apr; 11():75. PubMed ID: 24775602 [TBL] [Abstract][Full Text] [Related]
15. Case-study of a user-driven prosthetic arm design: bionic hand versus customized body-powered technology in a highly demanding work environment. Schweitzer W; Thali MJ; Egger D J Neuroeng Rehabil; 2018 Jan; 15(1):1. PubMed ID: 29298708 [TBL] [Abstract][Full Text] [Related]
16. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study. Dewald HA; Lukyanenko P; Lambrecht JM; Anderson JR; Tyler DJ; Kirsch RF; Williams MR J Neuroeng Rehabil; 2019 Nov; 16(1):147. PubMed ID: 31752886 [TBL] [Abstract][Full Text] [Related]
17. Design of a modular and compliant wrist module for upper limb prosthetics. Demofonti A; Carpino G; Tagliamonte NL; Baldini G; Bramato L; Zollo L Anat Rec (Hoboken); 2023 Apr; 306(4):764-776. PubMed ID: 35362663 [TBL] [Abstract][Full Text] [Related]
18. Optimizing pattern recognition-based control for partial-hand prosthesis application. Earley EJ; Adewuyi AA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3574-7. PubMed ID: 25570763 [TBL] [Abstract][Full Text] [Related]
19. Development of prosthetic arm with pneumatic prosthetic hand and tendon-driven wrist. Takeda H; Tsujiuchi N; Koizumi T; Kan H; Hirano M; Nakamura Y Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5048-51. PubMed ID: 19964378 [TBL] [Abstract][Full Text] [Related]
20. Inverse Kinematics of a Parallel Mechanism with an Offset Structural Design for Prosthetic Wrist Motions. Seo H; Chakragiri A; Purushothapu M; Lee S; Yeo WH Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4883-4885. PubMed ID: 34892303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]