These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21938650)

  • 1. Target Achievement Control Test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    J Rehabil Res Dev; 2011; 48(6):619-27. PubMed ID: 21938650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
    Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB
    JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis.
    Hargrove L; Miller L; Turner K; Kuiken T
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):60. PubMed ID: 30255800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis.
    Kaluf B; Gart MS; Loeffler BJ; Gaston G
    J Hand Surg Am; 2022 Oct; 47(10):1019.e1-1019.e9. PubMed ID: 34657765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements.
    Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    J Neuroeng Rehabil; 2014 Jan; 11():5. PubMed ID: 24410948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying pattern recognition-based myoelectric control of multifunctional transradial prostheses.
    Li G; Schultz AE; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):185-92. PubMed ID: 20071269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern recognition control of multifunction myoelectric prostheses by patients with congenital transradial limb defects: a preliminary study.
    Kryger M; Schultz AE; Kuiken T
    Prosthet Orthot Int; 2011 Dec; 35(4):395-401. PubMed ID: 21960053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure.
    Wurth SM; Hargrove LJ
    J Neuroeng Rehabil; 2014 May; 11():91. PubMed ID: 24886664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm.
    Losier Y; Englehart K; Hudgins B
    J Rehabil Res Dev; 2011; 48(6):669-78. PubMed ID: 21938654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use.
    Scheme E; Englehart K
    J Rehabil Res Dev; 2011; 48(6):643-59. PubMed ID: 21938652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion recognition for simultaneous control of multifunctional transradial prostheses.
    Jiang N; Tian L; Fang P; Dai Y; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1603-6. PubMed ID: 24110009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients.
    Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel classification strategy to simultaneous control elbow, wrist, and hand movements.
    Leone F; Gentile C; Cordella F; Gruppioni E; Guglielmelli E; Zollo L
    J Neuroeng Rehabil; 2022 Jan; 19(1):10. PubMed ID: 35090512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-degree-of-freedom powered prosthetic wrist.
    Kyberd PJ; Lemaire ED; Scheme E; MacPhail C; Goudreau L; Bush G; Brookeshaw M
    J Rehabil Res Dev; 2011; 48(6):609-17. PubMed ID: 21938649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time evaluation of a myoelectric control method for high-level upper limb amputees based on homologous leg movements.
    Lyons KR; Joshi SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6365-6368. PubMed ID: 28269705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.