These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 21938652)

  • 1. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use.
    Scheme E; Englehart K
    J Rehabil Res Dev; 2011; 48(6):643-59. PubMed ID: 21938652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electromyogram-based neural network control of transhumeral prostheses.
    Pulliam CL; Lambrecht JM; Kirsch RF
    J Rehabil Res Dev; 2011; 48(6):739-54. PubMed ID: 21938659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress on stabilizing and controlling powered upper-limb prostheses.
    Williams TW
    J Rehabil Res Dev; 2011; 48(6):ix-xix. PubMed ID: 21938646
    [No Abstract]   [Full Text] [Related]  

  • 4. Two-degree-of-freedom powered prosthetic wrist.
    Kyberd PJ; Lemaire ED; Scheme E; MacPhail C; Goudreau L; Bush G; Brookeshaw M
    J Rehabil Res Dev; 2011; 48(6):609-17. PubMed ID: 21938649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target Achievement Control Test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    J Rehabil Res Dev; 2011; 48(6):619-27. PubMed ID: 21938650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of electromyography and force as interfaces for prosthetic control.
    Corbett EA; Perreault EJ; Kuiken TA
    J Rehabil Res Dev; 2011; 48(6):629-41. PubMed ID: 21938651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm.
    Losier Y; Englehart K; Hudgins B
    J Rehabil Res Dev; 2011; 48(6):669-78. PubMed ID: 21938654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation.
    Parajuli N; Sreenivasan N; Bifulco P; Cesarelli M; Savino S; Niola V; Esposito D; Hamilton TJ; Naik GR; Gunawardana U; Gargiulo GD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
    Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB
    JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural machine interfaces for controlling multifunctional powered upper-limb prostheses.
    Ohnishi K; Weir RF; Kuiken TA
    Expert Rev Med Devices; 2007 Jan; 4(1):43-53. PubMed ID: 17187470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of upper limb prostheses: current progress and areas for growth.
    González-Fernández M
    Arch Phys Med Rehabil; 2014 Jun; 95(6):1013-4. PubMed ID: 24361817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG pattern recognition compared to foot control of the DEKA Arm.
    Resnik LJ; Acluche F; Borgia M; Cancio J; Latlief G; Phillips S; Sasson N
    PLoS One; 2018; 13(10):e0204854. PubMed ID: 30335781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis.
    Kaluf B; Gart MS; Loeffler BJ; Gaston G
    J Hand Surg Am; 2022 Oct; 47(10):1019.e1-1019.e9. PubMed ID: 34657765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural interfaces for control of upper limb prostheses: the state of the art and future possibilities.
    Schultz AE; Kuiken TA
    PM R; 2011 Jan; 3(1):55-67. PubMed ID: 21257135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses.
    Asogbon MG; Samuel OW; Geng Y; Oluwagbemi O; Ning J; Chen S; Ganesh N; Feng P; Li G
    Comput Methods Programs Biomed; 2020 Feb; 184():105278. PubMed ID: 31901634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges.
    Farina D; Jiang N; Rehbaum H; Holobar A; Graimann B; Dietl H; Aszmann OC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):797-809. PubMed ID: 24760934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dexterity, activity performance, disability, quality of life, and independence in upper limb Veteran prosthesis users: a normative study.
    Resnik L; Borgia M; Cancio J; Heckman J; Highsmith J; Levy C; Phillips S; Webster J
    Disabil Rehabil; 2022 Jun; 44(11):2470-2481. PubMed ID: 33073621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding a new neural machine interface for control of artificial limbs.
    Zhou P; Lowery MM; Englehart KB; Huang H; Li G; Hargrove L; Dewald JP; Kuiken TA
    J Neurophysiol; 2007 Nov; 98(5):2974-82. PubMed ID: 17728391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.