These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21938654)

  • 1. Evaluation of shoulder complex motion-based input strategies for endpoint prosthetic-limb control using dual-task paradigm.
    Losier Y; Englehart K; Hudgins B
    J Rehabil Res Dev; 2011; 48(6):669-78. PubMed ID: 21938654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and evaluation of prosthetic shoulder controller.
    Barton JE; Sorkin JD
    J Rehabil Res Dev; 2014; 51(5):711-26. PubMed ID: 25357185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electromyography and force as interfaces for prosthetic control.
    Corbett EA; Perreault EJ; Kuiken TA
    J Rehabil Res Dev; 2011; 48(6):629-41. PubMed ID: 21938651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    J Neuroeng Rehabil; 2021 May; 18(1):72. PubMed ID: 33933105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target Achievement Control Test: evaluating real-time myoelectric pattern-recognition control of multifunctional upper-limb prostheses.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    J Rehabil Res Dev; 2011; 48(6):619-27. PubMed ID: 21938650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Case report of modified Box and Blocks test with motion capture to measure prosthetic function.
    Hebert JS; Lewicke J
    J Rehabil Res Dev; 2012; 49(8):1163-74. PubMed ID: 23341309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-degree-of-freedom powered prosthetic wrist.
    Kyberd PJ; Lemaire ED; Scheme E; MacPhail C; Goudreau L; Bush G; Brookeshaw M
    J Rehabil Res Dev; 2011; 48(6):609-17. PubMed ID: 21938649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and evaluation of a prosthetic shoulder controller.
    Barton JE
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7462-5. PubMed ID: 22256064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intermanual transfer in training with an upper-limb myoelectric prosthesis simulator: a mechanistic, randomized, pretest-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    Phys Ther; 2013 Jan; 93(1):22-31. PubMed ID: 22976445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional assessment of control systems for cybernetic elbow prostheses--Part II: Application of the technique.
    Abul-Haj CJ; Hogan N
    IEEE Trans Biomed Eng; 1990 Nov; 37(11):1037-47. PubMed ID: 2276751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use.
    Scheme E; Englehart K
    J Rehabil Res Dev; 2011; 48(6):643-59. PubMed ID: 21938652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted reinnervation for improved prosthetic function.
    Kuiken T
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):1-13. PubMed ID: 16517341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A control system for a powered prosthesis using positional and myoelectric inputs from the shoulder complex.
    Losier Y; Englehart K; Hudgins B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6138-41. PubMed ID: 18003416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of the revolutionizing prosthetics modular prosthetic limb system for upper extremity amputees.
    Yu KE; Perry BN; Moran CW; Armiger RS; Johannes MS; Hawkins A; Stentz L; Vandersea J; Tsao JW; Pasquina PF
    Sci Rep; 2021 Jan; 11(1):954. PubMed ID: 33441604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and testing of new upper-limb prosthetic devices: research designs for usability testing.
    Resnik L
    J Rehabil Res Dev; 2011; 48(6):697-706. PubMed ID: 21938656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
    Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB
    JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor control and learning with lower-limb myoelectric control in amputees.
    Alcaide-Aguirre RE; Morgenroth DC; Ferris DP
    J Rehabil Res Dev; 2013; 50(5):687-98. PubMed ID: 24013916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of compensatory trunk movements during prosthetic upper limb reaching tasks.
    Metzger AJ; Dromerick AW; Holley RJ; Lum PS
    Arch Phys Med Rehabil; 2012 Nov; 93(11):2029-34. PubMed ID: 22449551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of real-time machine learning to myoelectric prosthesis control: A case series in adaptive switching.
    Edwards AL; Dawson MR; Hebert JS; Sherstan C; Sutton RS; Chan KM; Pilarski PM
    Prosthet Orthot Int; 2016 Oct; 40(5):573-81. PubMed ID: 26423106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of the design specifications of a powered humeral rotator for a myoelectric prosthesis.
    Troncossi M; Caminati R; Parenti-Castelli V
    Proc Inst Mech Eng H; 2011 May; 225(5):487-98. PubMed ID: 21755778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.