These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 21938659)

  • 1. Electromyogram-based neural network control of transhumeral prostheses.
    Pulliam CL; Lambrecht JM; Kirsch RF
    J Rehabil Res Dev; 2011; 48(6):739-54. PubMed ID: 21938659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment.
    Blana D; Kyriacou T; Lambrecht JM; Chadwick EK
    J Electromyogr Kinesiol; 2016 Aug; 29():21-7. PubMed ID: 26190031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of distal arm joint angles from EMG and shoulder orientation for transhumeral prostheses.
    Akhtar A; Aghasadeghi N; Hargrove L; Bretl T
    J Electromyogr Kinesiol; 2017 Aug; 35():86-94. PubMed ID: 28624687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use.
    Scheme E; Englehart K
    J Rehabil Res Dev; 2011; 48(6):643-59. PubMed ID: 21938652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of a Wireless Implantable Multi-electrode System for High-bandwidth Prosthetic Interfacing: Animal and Cadaver Study.
    Gstoettner C; Festin C; Prahm C; Bergmeister KD; Salminger S; Sturma A; Hofer C; Russold MF; Howard CL; McDonnall D; Farina D; Aszmann OC
    Clin Orthop Relat Res; 2022 Jun; 480(6):1191-1204. PubMed ID: 35202032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms.
    Kuiken TA; Li G; Lock BA; Lipschutz RD; Miller LA; Stubblefield KA; Englehart KB
    JAMA; 2009 Feb; 301(6):619-28. PubMed ID: 19211469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recurrent Convolutional Neural Networks as an Approach to Position-Aware Myoelectric Prosthesis Control.
    Williams H; Shehata AW; Dawson M; Scheme E; Hebert J; Pilarski P
    IEEE Trans Biomed Eng; 2022 Jul; 69(7):2243-2255. PubMed ID: 34986093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects.
    Bakshi K; Pramanik R; Manjunatha M; Kumar CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of distal arm joint angles from EMG and shoulder orientation for prosthesis control.
    Akhtar A; Hargrove LJ; Bretl T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4160-3. PubMed ID: 23366844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants for transhumeral amputees.
    Tsikandylakis G; Berlin Ö; Brånemark R
    Clin Orthop Relat Res; 2014 Oct; 472(10):2947-56. PubMed ID: 24879569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and Clinical Outcomes of Upper Extremity Amputation.
    Fitzgibbons P; Medvedev G
    J Am Acad Orthop Surg; 2015 Dec; 23(12):751-60. PubMed ID: 26527583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-degree-of-freedom powered prosthetic wrist.
    Kyberd PJ; Lemaire ED; Scheme E; MacPhail C; Goudreau L; Bush G; Brookeshaw M
    J Rehabil Res Dev; 2011; 48(6):609-17. PubMed ID: 21938649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergy-Space Recurrent Neural Network for Transferable Forearm Motion Prediction from Residual Limb Motion.
    Ahmed MH; Chai J; Shimoda S; Hayashibe M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees.
    Sattar NY; Kausar Z; Usama SA; Farooq U; Shah MF; Muhammad S; Khan R; Badran M
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees.
    Li X; Samuel OW; Zhang X; Wang H; Fang P; Li G
    J Neuroeng Rehabil; 2017 Jan; 14(1):2. PubMed ID: 28061779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extra-neural signals from severed nerves enable intrinsic hand movements in transhumeral amputations.
    Ahkami B; Mastinu E; Earley EJ; Ortiz-Catalan M
    Sci Rep; 2022 Jun; 12(1):10218. PubMed ID: 35715459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Contained Neuromusculoskeletal Arm Prostheses.
    Ortiz-Catalan M; Mastinu E; Sassu P; Aszmann O; Brånemark R
    N Engl J Med; 2020 Apr; 382(18):1732-1738. PubMed ID: 32348644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of compensatory trunk movements during prosthetic upper limb reaching tasks.
    Metzger AJ; Dromerick AW; Holley RJ; Lum PS
    Arch Phys Med Rehabil; 2012 Nov; 93(11):2029-34. PubMed ID: 22449551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder kinematics plus contextual target information enable control of multiple distal joints of a simulated prosthetic arm and hand.
    Mick S; Segas E; Dure L; Halgand C; Benois-Pineau J; Loeb GE; Cattaert D; de Rugy A
    J Neuroeng Rehabil; 2021 Jan; 18(1):3. PubMed ID: 33407618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-density surface EMG maps from upper-arm and forearm muscles.
    Rojas-Martínez M; Mañanas MA; Alonso JF
    J Neuroeng Rehabil; 2012 Dec; 9():85. PubMed ID: 23216679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.