These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21939053)

  • 1. The relationship between agricultural intensification and biological control: experimental tests across Europe.
    Thies C; Haenke S; Scherber C; Bengtsson J; Bommarco R; Clement LW; Ceryngier P; Dennis C; Emmerson M; Gagic V; Hawro V; Liira J; Weisser WW; Winqvist C; Tscharntke T
    Ecol Appl; 2011 Sep; 21(6):2187-96. PubMed ID: 21939053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landscape-scale pest suppression is mediated by timing of predator arrival.
    Costamagna AC; Venables WN; Schellhorn NA
    Ecol Appl; 2015 Jun; 25(4):1114-30. PubMed ID: 26465046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of natural enemy foraging guilds in controlling cereal aphids in Michigan wheat.
    Safarzoda S; Bahlai CA; Fox AF; Landis DA
    PLoS One; 2014; 9(12):e114230. PubMed ID: 25473951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape diversity enhances biological control of an introduced crop pest in the north-central USA.
    Gardiner MM; Landis DA; Gratton C; DiFonzo CD; O'Neal M; Chacon JM; Wayo MT; Schmidt NP; Mueller EE; Heimpel GE
    Ecol Appl; 2009 Jan; 19(1):143-54. PubMed ID: 19323179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative importance of predators and parasitoids for cereal aphid control.
    Schmidt MH; Lauer A; Purtauf T; Thies C; Schaefer M; Tscharntke T
    Proc Biol Sci; 2003 Sep; 270(1527):1905-9. PubMed ID: 14561303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diet of generalist predators reflects effects of cropping period and farming system on extra- and intraguild prey.
    Roubinet E; Birkhofer K; Malsher G; Staudacher K; Ekbom B; Traugott M; Jonsson M
    Ecol Appl; 2017 Jun; 27(4):1167-1177. PubMed ID: 28132400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial variability in ecosystem services: simple rules for predator-mediated pest suppression.
    Bianchi FJ; Schellhorn NA; Buckley YM; Possingham HP
    Ecol Appl; 2010 Dec; 20(8):2322-33. PubMed ID: 21265461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Agricultural intensification and cereal aphid-parasitoid-hyperparasitoid food webs: network complexity, temporal variability and parasitism rates.
    Gagic V; Hänke S; Thies C; Scherber C; Tomanović Z; Tscharntke T
    Oecologia; 2012 Dec; 170(4):1099-109. PubMed ID: 22644050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.
    Krauss J; Gallenberger I; Steffan-Dewenter I
    PLoS One; 2011; 6(5):e19502. PubMed ID: 21611171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural enemy interactions constrain pest control in complex agricultural landscapes.
    Martin EA; Reineking B; Seo B; Steffan-Dewenter I
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5534-9. PubMed ID: 23513216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of agricultural intensification on ability of natural enemies to control aphids.
    Zhao ZH; Hui C; He DH; Li BL
    Sci Rep; 2015 Jan; 5():8024. PubMed ID: 25620737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pest control of aphids depends on landscape complexity and natural enemy interactions.
    Martin EA; Reineking B; Seo B; Steffan-Dewenter I
    PeerJ; 2015; 3():e1095. PubMed ID: 26734497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional tritrophic relationship patterns of five aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) in agroecosystem-dominated landscapes of southeastern Europe.
    Tomanović Z; Kavallieratos NG; Starý P; Stanisavljević LZ; Cetković A; Stamenković S; Jovanović S; Athanassiou CG
    J Econ Entomol; 2009 Jun; 102(3):836-54. PubMed ID: 19610396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal variation in natural enemy assemblages on Maryland native plant species.
    Frank SD; Shrewsbury PM; Esiekpe O
    Environ Entomol; 2008 Apr; 37(2):478-86. PubMed ID: 18419920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space.
    von Berg K; Thies C; Tscharntke T; Scheu S
    Oecologia; 2010 Aug; 163(4):1033-42. PubMed ID: 20349249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increasing enemy biodiversity strengthens herbivore suppression on two plant species.
    Straub CS; Snyder WE
    Ecology; 2008 Jun; 89(6):1605-15. PubMed ID: 18589525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regulating effect of agricultural landscape pattern on ecological pest control by natural enemies.].
    Jiang T; Fu DM; Zhang WN; Zou Y; Xiao HJ
    Ying Yong Sheng Tai Xue Bao; 2019 Jul; 30(7):2511-2520. PubMed ID: 31418254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensified agriculture favors evolved resistance to biological control.
    Tomasetto F; Tylianakis JM; Reale M; Wratten S; Goldson SL
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3885-3890. PubMed ID: 28289202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habitat Management to Suppress Pest Populations: Progress and Prospects.
    Gurr GM; Wratten SD; Landis DA; You M
    Annu Rev Entomol; 2017 Jan; 62():91-109. PubMed ID: 27813664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementarity among natural enemies enhances pest suppression.
    Dainese M; Schneider G; Krauss J; Steffan-Dewenter I
    Sci Rep; 2017 Aug; 7(1):8172. PubMed ID: 28811504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.