These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21939222)

  • 1. Elaboration of nanostructured biointerfaces with tunable degree of coverage by protein nanotubes using electrophoretic deposition.
    Kalaskar DM; Poleunis C; Dupont-Gillain C; Demoustier-Champagne S
    Biomacromolecules; 2011 Nov; 12(11):4104-11. PubMed ID: 21939222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of preosteoblasts with surface-immobilized collagen-based nanotubes.
    Kalaskar DM; Demoustier-Champagne S; Dupont-Gillain CC
    Colloids Surf B Biointerfaces; 2013 Nov; 111():134-41. PubMed ID: 23792554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of collagen nanotubes with highly regular dimensions through membrane-templated layer-by-layer assembly.
    Landoulsi J; Roy CJ; Dupont-Gillain C; Demoustier-Champagne S
    Biomacromolecules; 2009 May; 10(5):1021-4. PubMed ID: 19371025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophoretic deposition of polyacrylic acid and composite films containing nanotubes and oxide particles.
    Wang Y; Deen I; Zhitomirsky I
    J Colloid Interface Sci; 2011 Oct; 362(2):367-74. PubMed ID: 21807372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-dissolvable sodium sulfate nanowires as a versatile template for the fabrication of polyelectrolyte- and metal-based nanotubes.
    Pu YC; Hwu JR; Su WC; Shieh DB; Tzeng Y; Yeh CS
    J Am Chem Soc; 2006 Sep; 128(35):11606-11. PubMed ID: 16939285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction.
    Das K; Bose S; Bandyopadhyay A
    J Biomed Mater Res A; 2009 Jul; 90(1):225-37. PubMed ID: 18496867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured biointerfacing of metals with carbon nanotube/chitosan hybrids by electrodeposition for cell stimulation and therapeutics delivery.
    Patel KD; Kim TH; Lee EJ; Han CM; Lee JY; Singh RK; Kim HW
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20214-24. PubMed ID: 25325144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Randomly oriented, upright SiO2 coated nanorods for reduced adhesion of mammalian cells.
    Lee J; Chu BH; Chen KH; Ren F; Lele TP
    Biomaterials; 2009 Sep; 30(27):4488-93. PubMed ID: 19515416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and controlling type I collagen adsorption and assembly at interfaces, and application to cell engineering.
    Dupont-Gillain CC
    Colloids Surf B Biointerfaces; 2014 Dec; 124():87-96. PubMed ID: 25245299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application.
    Ariga K; Hill JP; Ji Q
    Phys Chem Chem Phys; 2007 May; 9(19):2319-40. PubMed ID: 17492095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial.
    Chen J; Chen C; Chen Z; Chen J; Li Q; Huang N
    J Biomed Mater Res A; 2010 Nov; 95(2):341-9. PubMed ID: 20623672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds.
    Zawadzak E; Bil M; Ryszkowska J; Nazhat SN; Cho J; Bretcanu O; Roether JA; Boccaccini AR
    Biomed Mater; 2009 Feb; 4(1):015008. PubMed ID: 19020345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of single walled carbon nanotube surface chemistry to improve aqueous solubility and enhance cellular interactions.
    Crouzier T; Nimmagadda A; Nollert MU; McFetridge PS
    Langmuir; 2008 Nov; 24(22):13173-81. PubMed ID: 18947245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy for the assembly of carbon nanotube-metal nanoparticle hybrids using biointerfaces.
    Kim SN; Slocik JM; Naik RR
    Small; 2010 Sep; 6(18):1992-5. PubMed ID: 20721951
    [No Abstract]   [Full Text] [Related]  

  • 17. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S
    Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coating and selective deposition of nanofilm on silicone rubber for cell adhesion and growth.
    Ai H; Lvov YM; Mills DK; Jennings M; Alexander JS; Jones SA
    Cell Biochem Biophys; 2003; 38(2):103-14. PubMed ID: 12777710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite.
    Kodama A; Bauer S; Komatsu A; Asoh H; Ono S; Schmuki P
    Acta Biomater; 2009 Jul; 5(6):2322-30. PubMed ID: 19332383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretically deposited polyaniline nanotubes based film for cholesterol detection.
    Dhand C; Solanki PR; Pandey MK; Datta M; Malhotra BD
    Electrophoresis; 2010 Nov; 31(22):3754-62. PubMed ID: 21077243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.