These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21939233)

  • 41. The importance of the conserved Arg191-Asp227 salt bridge of triosephosphate isomerase for folding, stability, and catalysis.
    Kursula I; Partanen S; Lambeir AM; Wierenga RK
    FEBS Lett; 2002 May; 518(1-3):39-42. PubMed ID: 11997014
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Segmental movement: definition of the structural requirements for loop closure in catalysis by triosephosphate isomerase.
    Sampson NS; Knowles JR
    Biochemistry; 1992 Sep; 31(36):8482-7. PubMed ID: 1390632
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphodianion Activation of Enzymes for Catalysis of Central Metabolic Reactions.
    Fernandez PL; Nagorski RW; Cristobal JR; Amyes TL; Richard JP
    J Am Chem Soc; 2021 Feb; 143(7):2694-2698. PubMed ID: 33560827
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzyme activation through the utilization of intrinsic dianion binding energy.
    Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP
    Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure of the triosephosphate isomerase-phosphoglycolohydroxamate complex: an analogue of the intermediate on the reaction pathway.
    Davenport RC; Bash PA; Seaton BA; Karplus M; Petsko GA; Ringe D
    Biochemistry; 1991 Jun; 30(24):5821-6. PubMed ID: 2043623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Difference FTIR Studies of Substrate Distribution in Triosephosphate Isomerase.
    Deng H; Vedad J; Desamero RZB; Callender R
    J Phys Chem B; 2017 Nov; 121(43):10036-10045. PubMed ID: 28990791
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Design, creation, and characterization of a stable, monomeric triosephosphate isomerase.
    Borchert TV; Abagyan R; Jaenicke R; Wierenga RK
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1515-8. PubMed ID: 8108439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydron transfer catalyzed by triosephosphate isomerase. Products of isomerization of dihydroxyacetone phosphate in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Biochemistry; 2005 Feb; 44(7):2622-31. PubMed ID: 15709775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural determinants for ligand binding and catalysis of triosephosphate isomerase.
    Kursula I; Partanen S; Lambeir AM; Antonov DM; Augustyns K; Wierenga RK
    Eur J Biochem; 2001 Oct; 268(19):5189-96. PubMed ID: 11589711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power.
    Williams JC; Zeelen JP; Neubauer G; Vriend G; Backmann J; Michels PA; Lambeir AM; Wierenga RK
    Protein Eng; 1999 Mar; 12(3):243-50. PubMed ID: 10235625
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics.
    Rozovsky S; Jogl G; Tong L; McDermott AE
    J Mol Biol; 2001 Jun; 310(1):271-80. PubMed ID: 11419952
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural effects of a dimer interface mutation on catalytic activity of triosephosphate isomerase. The role of conserved residues and complementary mutations.
    Banerjee M; Balaram H; Balaram P
    FEBS J; 2009 Aug; 276(15):4169-83. PubMed ID: 19583769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Slow proton transfer from the hydrogen-labelled carboxylic acid side chain (Glu-165) of triosephosphate isomerase to imidazole buffer in D2O.
    O'Donoghue AC; Amyes TL; Richard JP
    Org Biomol Chem; 2008 Jan; 6(2):391-6. PubMed ID: 18175010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structures of triosephosphate isomerase from methicillin resistant Staphylococcus aureus MRSA252 provide structural insights into novel modes of ligand binding and unique conformations of catalytic loop.
    Mukherjee S; Roychowdhury A; Dutta D; Das AK
    Biochimie; 2012 Dec; 94(12):2532-44. PubMed ID: 22813930
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence for a (triosephosphate isomerase-like) "catalytic loop" near the active site of glyoxalase I.
    Lan Y; Lu T; Lovett PS; Creighton DJ
    J Biol Chem; 1995 Jun; 270(22):12957-60. PubMed ID: 7768882
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Catalysis by orotidine 5'-monophosphate decarboxylase: effect of 5-fluoro and 4'-substituents on the decarboxylation of two-part substrates.
    Goryanova B; Spong K; Amyes TL; Richard JP
    Biochemistry; 2013 Jan; 52(3):537-46. PubMed ID: 23276261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crystal structure of the mutant yeast triosephosphate isomerase in which the catalytic base glutamic acid 165 is changed to aspartic acid.
    Joseph-McCarthy D; Rost LE; Komives EA; Petsko GA
    Biochemistry; 1994 Mar; 33(10):2824-9. PubMed ID: 7907502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Uncovering the Role of Key Active-Site Side Chains in Catalysis: An Extended Brønsted Relationship for Substrate Deprotonation Catalyzed by Wild-Type and Variants of Triosephosphate Isomerase.
    Kulkarni YS; Amyes TL; Richard JP; Kamerlin SCL
    J Am Chem Soc; 2019 Oct; 141(40):16139-16150. PubMed ID: 31508957
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ab initio models for receptor-ligand interactions in proteins. 4. Model assembly study of the catalytic mechanism of triosephosphate isomerase.
    Peräkylä M; Pakkanen TA
    Proteins; 1996 Jun; 25(2):225-36. PubMed ID: 8811738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural studies show that the A178L mutation in the C-terminal hinge of the catalytic loop-6 of triosephosphate isomerase (TIM) induces a closed-like conformation in dimeric and monomeric TIM.
    Alahuhta M; Casteleijn MG; Neubauer P; Wierenga RK
    Acta Crystallogr D Biol Crystallogr; 2008 Feb; 64(Pt 2):178-88. PubMed ID: 18219118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.