BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21939587)

  • 1. PXRF, μ-XRF, vacuum μ-XRF, and EPMA analysis of Email Champlevé objects present in Belgian museums.
    Van der Linden V; Meesdom E; Devos A; Van Dooren R; Nieuwdorp H; Janssen E; Balace S; Vekemans B; Vincze L; Janssens K
    Microsc Microanal; 2011 Oct; 17(5):674-85. PubMed ID: 21939587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of glass artifacts: application of modern surface analytical techniques.
    Melcher M; Wiesinger R; Schreiner M
    Acc Chem Res; 2010 Jun; 43(6):916-26. PubMed ID: 20050642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques.
    Sokaras D; Karydas AG; Oikonomou A; Zacharias N; Beltsios K; Kantarelou V
    Anal Bioanal Chem; 2009 Dec; 395(7):2199-209. PubMed ID: 19821114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. μ-XRF analysis of glasses: a non-destructive utility for Cultural Heritage applications.
    Vaggelli G; Cossio R
    Analyst; 2012 Feb; 137(3):662-7. PubMed ID: 22163367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elemental mapping of Moroccan enameled terracotta tile works (Zellij) based on X-ray micro-analyses.
    Bendaoud R; Guilherme A; Zegzouti A; Elaatmani M; Coroado J; Carvalho ML; Queralt I
    Appl Radiat Isot; 2013 Dec; 82():60-6. PubMed ID: 23954284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea Scrolls.
    Mantouvalou I; Wolff T; Hahn O; Rabin I; Lühl L; Pagels M; Malzer W; Kanngiesser B
    Anal Chem; 2011 Aug; 83(16):6308-15. PubMed ID: 21711051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Influence of ancient glass samples surface conditions on chemical composition analysis using portable XRF].
    Liu S; Li QH; Gan FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1954-9. PubMed ID: 21942060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of X-ray fluorescence and wet chemical analysis of air filter samples from a scrap lead smelting operation.
    Harper M; Hallmark TS; Andrew ME; Bird AJ
    J Environ Monit; 2004 Oct; 6(10):819-26. PubMed ID: 15480496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.
    Eveno M; Moignard B; Castaing J
    Microsc Microanal; 2011 Oct; 17(5):667-73. PubMed ID: 21615981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nondestructive analysis of single crystals of selenide spinels by X-ray spectrometry techniques.
    Malicka E; Sitko R; Zawisza B; Heimann J; Kajewski D; Kita A
    Anal Bioanal Chem; 2011 Mar; 399(9):3285-92. PubMed ID: 20924565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. XRF, μ-XRD and μ-spectroscopic techniques for revealing the composition and structure of paint layers on polychrome sculptures after multiple restorations.
    Franquelo ML; Duran A; Castaing J; Arquillo D; Perez-Rodriguez JL
    Talanta; 2012 Jan; 89():462-9. PubMed ID: 22284518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Analysis of Iron and Silicon Concentrations in Iron Ore Concentrate Using Portable X-ray Fluorescence (XRF).
    Zhou S; Yuan Z; Cheng Q; Weindorf DC; Zhang Z; Yang J; Zhang X; Chen G; Xie S
    Appl Spectrosc; 2020 Jan; 74(1):55-62. PubMed ID: 31397585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a portable X-ray fluorescence instrument for the determination of lead in workplace air samples.
    Morley JC; Clark CS; Deddens JA; Ashley K; Roda S
    Appl Occup Environ Hyg; 1999 May; 14(5):306-16. PubMed ID: 10446483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An examination of kernite (Na2B4O6(OH)2·3H2O) using X-ray and electron spectroscopies: quantitative microanalysis of a hydrated low-Z mineral.
    Meier DC; Davis JM; Vicenzi EP
    Microsc Microanal; 2011 Oct; 17(5):718-27. PubMed ID: 21892991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.
    Tykot RH
    Appl Spectrosc; 2016 Jan; 70(1):42-56. PubMed ID: 26767632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal growth by restorative filling materials.
    Endo K; Hashimoto M; Haraguchi K; Ohno H
    Eur J Oral Sci; 2010 Oct; 118(5):489-93. PubMed ID: 20831583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Chemical and physical characteristics and toxicology of man-made mineral fibers].
    Foà V; Basilico S
    Med Lav; 1999; 90(1):10-52. PubMed ID: 10339953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of mural paintings using in situ XRF, confocal synchrotron-μ-XRF, μ-XRD, optical microscopy, and SEM-EDS--the case of the frescoes from Misericordia Church of Odemira.
    Valadas S; Candeias A; Mirão J; Tavares D; Coroado J; Simon R; Silva AS; Gil M; Guilherme A; Carvalho ML
    Microsc Microanal; 2011 Oct; 17(5):702-9. PubMed ID: 21888755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Roman Imperial coins by combined PIXE, HE-PIXE and μ-XRF.
    Vadrucci M; Mazzinghi A; Gorghinian A; Picardi L; Ronsivalle C; Ruberto C; Chiari M
    Appl Radiat Isot; 2019 Jan; 143():35-40. PubMed ID: 30368051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.
    Harper M; Pacolay B; Hintz P; Bartley DL; Slaven JE; Andrew ME
    J Environ Monit; 2007 Nov; 9(11):1263-70. PubMed ID: 17968454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.