These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21940641)

  • 1. ImOSM: intermittent evolution and robustness of phylogenetic methods.
    Thi Nguyen MA; Gesell T; von Haeseler A
    Mol Biol Evol; 2012 Feb; 29(2):663-73. PubMed ID: 21940641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian and maximum likelihood phylogenetic analyses of protein sequence data under relative branch-length differences and model violation.
    Mar JC; Harlow TJ; Ragan MA
    BMC Evol Biol; 2005 Jan; 5():8. PubMed ID: 15676079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site.
    Tateno Y; Takezaki N; Nei M
    Mol Biol Evol; 1994 Mar; 11(2):261-77. PubMed ID: 8170367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree.
    Sourdis J; Nei M
    Mol Biol Evol; 1988 May; 5(3):298-311. PubMed ID: 3386530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of distance-based phylogenetic methods by a local maximum likelihood approach using triplets.
    Ranwez V; Gascuel O
    Mol Biol Evol; 2002 Nov; 19(11):1952-63. PubMed ID: 12411604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the robustness of phylogenetic methods to among-site variability in substitution processes.
    Holder MT; Zwickl DJ; Dessimoz C
    Philos Trans R Soc Lond B Biol Sci; 2008 Dec; 363(1512):4013-21. PubMed ID: 18852108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used.
    Takahashi K; Nei M
    Mol Biol Evol; 2000 Aug; 17(8):1251-8. PubMed ID: 10908645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative efficiencies of the maximum likelihood, maximum parsimony, and neighbor-joining methods for estimating protein phylogeny.
    Hasegawa M; Fujiwara M
    Mol Phylogenet Evol; 1993 Mar; 2(1):1-5. PubMed ID: 8081543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Trees.
    Whelan S; Morrison DA
    Methods Mol Biol; 2017; 1525():349-377. PubMed ID: 27896728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony.
    Tourasse NJ; Gouy M
    Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. More on the Best Evolutionary Rate for Phylogenetic Analysis.
    Klopfstein S; Massingham T; Goldman N
    Syst Biol; 2017 Sep; 66(5):769-785. PubMed ID: 28595363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogenetic inference with weighted codon evolutionary distances.
    Criscuolo A; Michel CJ
    J Mol Evol; 2009 Apr; 68(4):377-92. PubMed ID: 19308635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods.
    Zhang J; Nei M
    J Mol Evol; 1997; 44 Suppl 1():S139-46. PubMed ID: 9071022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness of Phylogenetic Inference to Model Misspecification Caused by Pairwise Epistasis.
    Magee AF; Hilton SK; DeWitt WS
    Mol Biol Evol; 2021 Sep; 38(10):4603-4615. PubMed ID: 34043795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small.
    Nei M; Kumar S; Takahashi K
    Proc Natl Acad Sci U S A; 1998 Oct; 95(21):12390-7. PubMed ID: 9770497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Prevalence and Impact of Model Violations in Phylogenetic Analysis.
    Naser-Khdour S; Minh BQ; Zhang W; Stone EA; Lanfear R
    Genome Biol Evol; 2019 Dec; 11(12):3341-3352. PubMed ID: 31536115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference.
    Rosenberg MS; Kumar S
    Mol Biol Evol; 2003 Apr; 20(4):610-21. PubMed ID: 12679548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny.
    Katoh K; Kuma K; Miyata T
    J Mol Evol; 2001; 53(4-5):477-84. PubMed ID: 11675608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.