These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21940710)

  • 81. Privileged scaffolds in lead generation.
    Zhao H; Dietrich J
    Expert Opin Drug Discov; 2015 Jul; 10(7):781-90. PubMed ID: 25959748
    [TBL] [Abstract][Full Text] [Related]  

  • 82. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Overview of high-throughput screening.
    Entzeroth M; Flotow H; Condron P
    Curr Protoc Pharmacol; 2009 Mar; Chapter 9():Unit 9.4. PubMed ID: 22294406
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Development and Testing of Druglike Screening Libraries.
    Wang J; Ge Y; Xie XQ
    J Chem Inf Model; 2019 Jan; 59(1):53-65. PubMed ID: 30563329
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Integrated in vitro-in silico screening strategy for the discovery of antibacterial compounds.
    Nybond S; Ghemtio L; Nawrot DA; Karp M; Xhaard H; Tammela P
    Assay Drug Dev Technol; 2015; 13(1):25-33. PubMed ID: 25710544
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The European Lead Factory: An updated HTS compound library for innovative drug discovery.
    van Vlijmen H; Ortholand JY; Li VM; de Vlieger JSB
    Drug Discov Today; 2021 Oct; 26(10):2406-2413. PubMed ID: 33892142
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Targeting HIV-1 Protease Autoprocessing for High-throughput Drug Discovery and Drug Resistance Assessment.
    Huang L; Li L; Tien C; LaBarbera DV; Chen C
    Sci Rep; 2019 Jan; 9(1):301. PubMed ID: 30670786
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Compound Transfer by Acoustic Droplet Ejection Promotes Quality and Efficiency in Ultra-High-Throughput Screening Campaigns.
    Dawes TD; Turincio R; Jones SW; Rodriguez RA; Gadiagellan D; Thana P; Clark KR; Gustafson AE; Orren L; Liimatta M; Gross DP; Maurer T; Beresini MH
    J Lab Autom; 2016 Feb; 21(1):64-75. PubMed ID: 26077161
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Improving detection of rare biological events in high-throughput screens.
    Murie C; Barette C; Button J; Lafanechère L; Nadon R
    J Biomol Screen; 2015 Feb; 20(2):230-41. PubMed ID: 25190066
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Multimodal Data Analysis Approach for Targeted Drug Discovery Involving Topological Data Analysis (TDA).
    Alagappan M; Jiang D; Denko N; Koong AC
    Adv Exp Med Biol; 2016; 899():253-68. PubMed ID: 27325272
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Expansion of chemical space for collaborative lead generation and drug discovery: the European Lead Factory Perspective.
    Karawajczyk A; Giordanetto F; Benningshof J; Hamza D; Kalliokoski T; Pouwer K; Morgentin R; Nelson A; Müller G; Piechot A; Tzalis D
    Drug Discov Today; 2015 Nov; 20(11):1310-6. PubMed ID: 26429298
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Natural product libraries: assembly, maintenance, and screening.
    Butler MS; Fontaine F; Cooper MA
    Planta Med; 2014 Sep; 80(14):1161-70. PubMed ID: 24310213
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Use of primary human cells in high-throughput screens.
    Dunne A; Jowett M; Rees S
    Methods Mol Biol; 2009; 565():239-57. PubMed ID: 19551366
    [TBL] [Abstract][Full Text] [Related]  

  • 94. High-throughput screening normalized to biological response: application to antiviral drug discovery.
    Patel DA; Patel AC; Nolan WC; Huang G; Romero AG; Charlton N; Agapov E; Zhang Y; Holtzman MJ
    J Biomol Screen; 2014 Jan; 19(1):119-30. PubMed ID: 23860224
    [TBL] [Abstract][Full Text] [Related]  

  • 95. How to Triage PAINS-Full Research.
    Dahlin JL; Walters MA
    Assay Drug Dev Technol; 2016 Apr; 14(3):168-74. PubMed ID: 26496388
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A Simple Procedure for Creating Scalable Phenotypic Screening Assays in Human Neurons.
    Sridharan B; Hubbs C; Llamosas N; Kilinc M; Singhera FU; Willems E; Piper DR; Scampavia L; Rumbaugh G; Spicer TP
    Sci Rep; 2019 Jun; 9(1):9000. PubMed ID: 31227747
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Acoustic droplet ejection facilitates cell-based high-throughput screenings using natural products.
    Mackenzie TA; Tormo JR; Cautain B; Martínez G; Sánchez I; Genilloud O; Vicente F; Ramos MC
    SLAS Technol; 2024 Jun; 29(3):100111. PubMed ID: 37898289
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Abbott Physicochemical Tiering (APT)--a unified approach to HTS triage.
    Cox PB; Gregg RJ; Vasudevan A
    Bioorg Med Chem; 2012 Jul; 20(14):4564-73. PubMed ID: 22727778
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Development of Protein Chips for High Throughput Screening (HTS) of Chemically Labeling Small Molecular Drugs.
    Feng Y; Wang B; Chu X; Wang Y; Zhu L
    Mini Rev Med Chem; 2016; 16(10):846-50. PubMed ID: 25963567
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.
    Chung TD
    Methods Mol Biol; 2013; 1053():53-84. PubMed ID: 23860647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.