These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21940890)
1. Efficient dehydrogenation of formic acid using an iron catalyst. Boddien A; Mellmann D; Gärtner F; Jackstell R; Junge H; Dyson PJ; Laurenczy G; Ludwig R; Beller M Science; 2011 Sep; 333(6050):1733-6. PubMed ID: 21940890 [TBL] [Abstract][Full Text] [Related]
2. Iron-catalyzed hydrogen production from formic acid. Boddien A; Loges B; Gärtner F; Torborg C; Fumino K; Junge H; Ludwig R; Beller M J Am Chem Soc; 2010 Jul; 132(26):8924-34. PubMed ID: 20550131 [TBL] [Abstract][Full Text] [Related]
3. Efficient subnanometric gold-catalyzed hydrogen generation via formic acid decomposition under ambient conditions. Bi QY; Du XL; Liu YM; Cao Y; He HY; Fan KN J Am Chem Soc; 2012 May; 134(21):8926-33. PubMed ID: 22568664 [TBL] [Abstract][Full Text] [Related]
4. Base-free non-noble-metal-catalyzed hydrogen generation from formic acid: scope and mechanistic insights. Mellmann D; Barsch E; Bauer M; Grabow K; Boddien A; Kammer A; Sponholz P; Bentrup U; Jackstell R; Junge H; Laurenczy G; Ludwig R; Beller M Chemistry; 2014 Oct; 20(42):13589-602. PubMed ID: 25196789 [TBL] [Abstract][Full Text] [Related]
5. Hydrogen storage and delivery: the carbon dioxide - formic acid couple. Laurenczy G Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175 [TBL] [Abstract][Full Text] [Related]
8. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights. Gärtner F; Boddien A; Barsch E; Fumino K; Losse S; Junge H; Hollmann D; Brückner A; Ludwig R; Beller M Chemistry; 2011 May; 17(23):6425-36. PubMed ID: 21506181 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and structure of intermediates in copper-catalyzed alkylation of diphenylphosphine. Cain MF; Hughes RP; Glueck DS; Golen JA; Moore CE; Rheingold AL Inorg Chem; 2010 Sep; 49(17):7650-62. PubMed ID: 20617815 [TBL] [Abstract][Full Text] [Related]
10. Homogeneous catalysts supported on soluble polymers: biphasic Sonogashira coupling of aryl halides and acetylenes using MeOPEG-bound phosphine-palladium catalysts for efficient catalyst recycling. Köllhofer A; Plenio H Chemistry; 2003 Mar; 9(6):1416-25. PubMed ID: 12645031 [TBL] [Abstract][Full Text] [Related]
11. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water. Wang Z; Lu SM; Li J; Wang J; Li C Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172 [TBL] [Abstract][Full Text] [Related]
12. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. Bielinski EA; Lagaditis PO; Zhang Y; Mercado BQ; Würtele C; Bernskoetter WH; Hazari N; Schneider S J Am Chem Soc; 2014 Jul; 136(29):10234-7. PubMed ID: 24999607 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the reactions of small neutral iron oxide clusters with methanol. Xie Y; Dong F; Heinbuch S; Rocca JJ; Bernstein ER J Chem Phys; 2009 Mar; 130(11):114306. PubMed ID: 19317538 [TBL] [Abstract][Full Text] [Related]
15. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions. Zell T; Butschke B; Ben-David Y; Milstein D Chemistry; 2013 Jun; 19(25):8068-72. PubMed ID: 23649981 [TBL] [Abstract][Full Text] [Related]
16. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction. Sharma PK; De Visser SP; Ogliaro F; Shaik S J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559 [TBL] [Abstract][Full Text] [Related]
17. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? Abbel R; Abdur-Rashid K; Faatz M; Hadzovic A; Lough AJ; Morris RH J Am Chem Soc; 2005 Feb; 127(6):1870-82. PubMed ID: 15701022 [TBL] [Abstract][Full Text] [Related]
18. Pincer phosphine complexes of ruthenium: formation of Ru(P-O-P)(PPh3)HCl (P-O-P = xantphos, DPEphos, (Ph2PCH2CH2)2O) and Ru(dppf)(PPh3)HCl and characterization of cationic dioxygen, dihydrogen, dinitrogen, and arene coordinated phosphine products. Ledger AE; Moreno A; Ellul CE; Mahon MF; Pregosin PS; Whittlesey MK; Williams JM Inorg Chem; 2010 Aug; 49(16):7244-56. PubMed ID: 20575584 [TBL] [Abstract][Full Text] [Related]
19. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid. Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204 [TBL] [Abstract][Full Text] [Related]
20. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon. Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]