These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21941474)

  • 1. Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks.
    Thaler L; Goodale MA
    Front Hum Neurosci; 2011; 5():92. PubMed ID: 21941474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of online visual feedback for the control of target-directed and allocentric hand movements.
    Thaler L; Goodale MA
    J Neurophysiol; 2011 Feb; 105(2):846-59. PubMed ID: 21160005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common and distinct neural trends of allocentric and egocentric spatial coding: An ALE meta-analysis.
    Derbie AY; Chau BKH; Wong CHY; Chen LD; Ting KH; Lam BYH; Lee TMC; Chan CCH; Smith Y
    Eur J Neurosci; 2021 Jun; 53(11):3672-3687. PubMed ID: 33880818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction times for allocentric movements are 35 ms slower than reaction times for target-directed movements.
    Thaler L; Goodale MA
    Exp Brain Res; 2011 Jun; 211(2):313-28. PubMed ID: 21516448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allocentric coding in ventral and dorsal routes during real-time reaching: Evidence from imaging-guided multi-site brain stimulation.
    Adam JJ; Bovend'Eerdt TJ; Schuhmann T; Sack AT
    Behav Brain Res; 2016 Mar; 300():143-9. PubMed ID: 26698396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allocentric representations for target memory and reaching in human cortex.
    Chen Y; Crawford JD
    Ann N Y Acad Sci; 2020 Mar; 1464(1):142-155. PubMed ID: 31621922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common and specific neural correlates underlying the spatial congruency effect induced by the egocentric and allocentric reference frame.
    Liu N; Li H; Su W; Chen Q
    Hum Brain Mapp; 2017 Apr; 38(4):2112-2127. PubMed ID: 28054740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parietal Activation Associated With Target-Directed Right Hand Movement Is Lateralized by Mirror Feedback to the Ipsilateral Hemisphere.
    Manuweera T; Yarossi M; Adamovich S; Tunik E
    Front Hum Neurosci; 2018; 12():531. PubMed ID: 30687047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans.
    Chen Y; Monaco S; Crawford JD
    Eur J Neurosci; 2018 Apr; 47(8):901-917. PubMed ID: 29512943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neural basis of the egocentric and allocentric spatial frame of reference.
    Zaehle T; Jordan K; Wüstenberg T; Baudewig J; Dechent P; Mast FW
    Brain Res; 2007 Mar; 1137(1):92-103. PubMed ID: 17258693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PET study of pointing with visual feedback of moving hands.
    Inoue K; Kawashima R; Satoh K; Kinomura S; Goto R; Koyama M; Sugiura M; Ito M; Fukuda H
    J Neurophysiol; 1998 Jan; 79(1):117-25. PubMed ID: 9425182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and Structural Architectures of Allocentric and Egocentric Spatial Coding in Aging: A Combined DTI and fMRI Study.
    Derbie AY; Chau BKH; Chan CCH
    Front Neurol; 2021; 12():802975. PubMed ID: 35153982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural consequences of conflict between intention and the senses.
    Fink GR; Marshall JC; Halligan PW; Frith CD; Driver J; Frackowiak RS; Dolan RJ
    Brain; 1999 Mar; 122 ( Pt 3)():497-512. PubMed ID: 10094258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human neuroimaging reveals the subcomponents of grasping, reaching and pointing actions.
    Cavina-Pratesi C; Connolly JD; Monaco S; Figley TD; Milner AD; Schenk T; Culham JC
    Cortex; 2018 Jan; 98():128-148. PubMed ID: 28668221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between ego- and allocentric neuronal representations of space.
    Neggers SF; Van der Lubbe RH; Ramsey NF; Postma A
    Neuroimage; 2006 May; 31(1):320-31. PubMed ID: 16473025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of V5 (hMT+) in visually guided hand movements: an fMRI study.
    Oreja-Guevara C; Kleiser R; Paulus W; Kruse W; Seitz RJ; Hoffmann KP
    Eur J Neurosci; 2004 Jun; 19(11):3113-20. PubMed ID: 15182320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues.
    Neely KA; Tessmer A; Binsted G; Heath M
    Exp Brain Res; 2008 Apr; 186(3):375-84. PubMed ID: 18087697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.