BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 21942274)

  • 21. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars.
    Su Q; Ma X; Dong J; Jiang C; Qian W
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clean and modified substrates for direct detection of living cells by surface-enhanced Raman spectroscopy.
    Huang JY; Zong C; Xu LJ; Cui Y; Ren B
    Chem Commun (Camb); 2011 May; 47(20):5738-40. PubMed ID: 21503323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimally invasive surface-enhanced Raman scattering detection with depth profiles based on a surface-enhanced Raman scattering-active acupuncture needle.
    Dong J; Chen Q; Rong C; Li D; Rao Y
    Anal Chem; 2011 Aug; 83(16):6191-5. PubMed ID: 21728307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA assembly and enzymatic cutting in solutions: a gold nanoparticle based SERS detection strategy.
    Crew E; Yan H; Lin L; Yin J; Skeete Z; Kotlyar T; Tchah N; Lee J; Bellavia M; Goodshaw I; Joseph P; Luo J; Gal S; Zhong CJ
    Analyst; 2013 Sep; 138(17):4941-9. PubMed ID: 23799231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering.
    Chen K; Han H; Luo Z
    Analyst; 2012 Mar; 137(5):1259-64. PubMed ID: 22282767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering based detection of bacterial biomarker and potential surface reaction species.
    Cheng HW; Luo WQ; Wen GL; Huan SY; Shen GL; Yu RQ
    Analyst; 2010 Nov; 135(11):2993-3001. PubMed ID: 20877832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y; Ren B; Yao JL; Gu RA; Tian ZQ
    J Phys Chem B; 2006 Mar; 110(9):4002-6. PubMed ID: 16509689
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-enhanced Raman scattering study of the redox adsorption of p-phenylenediamine on gold or copper surfaces.
    de Carvalho DF; da Fonseca BG; Barbosa IL; Landi SM; de Sena LÁ; Archanjo BS; Sant'Ana AC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():108-13. PubMed ID: 23257336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-enhanced Raman scattering imaging using noble metal nanoparticles.
    Wilson AJ; Willets KA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):180-9. PubMed ID: 23335562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial self-assembled functional nanoparticle array: a facile surface-enhanced Raman scattering sensor for specific detection of trace analytes.
    Zhang K; Ji J; Li Y; Liu B
    Anal Chem; 2014 Jul; 86(13):6660-5. PubMed ID: 24915488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly selective SERS probe for Hg(II) detection using tryptophan-protected popcorn shaped gold nanoparticles.
    Senapati T; Senapati D; Singh AK; Fan Z; Kanchanapally R; Ray PC
    Chem Commun (Camb); 2011 Oct; 47(37):10326-8. PubMed ID: 21853207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of human serum albumin through surface-enhanced Raman scattering using gold "pearl necklace" nanomaterials as substrates.
    Lin ZH; Chen IC; Chang HT
    Chem Commun (Camb); 2011 Jul; 47(25):7116-8. PubMed ID: 21614397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane.
    Li MD; Cui Y; Gao MX; Luo J; Ren B; Tian ZQ
    Anal Chem; 2008 Jul; 80(13):5118-25. PubMed ID: 18489182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY; Huang CC; Jhang JS; Liu AC; Chiang CC; Hsieh ML; Huang PJ; Tuyen le D; Minh le Q; Yang TS; Chau LK; Kan HC; Hsu CC
    Opt Express; 2009 Nov; 17(24):21522-9. PubMed ID: 19997393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A label-free gold-nanoparticle-based SERS assay for direct cyanide detection at the parts-per-trillion level.
    Senapati D; Dasary SS; Singh AK; Senapati T; Yu H; Ray PC
    Chemistry; 2011 Jul; 17(30):8445-51. PubMed ID: 21744401
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.