BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 21942282)

  • 1. Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field.
    Srinivasan SG; van Duin AC
    J Phys Chem A; 2011 Nov; 115(46):13269-80. PubMed ID: 21942282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical and experimental studies of the reactions between hyperthermal O(3P) and graphite: graphene-based direct dynamics and beam-surface scattering approaches.
    Paci JT; Upadhyaya HP; Zhang J; Schatz GC; Minton TK
    J Phys Chem A; 2009 Apr; 113(16):4677-85. PubMed ID: 19301890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large scale computational chemistry modeling of the oxidation of highly oriented pyrolytic graphite.
    Poovathingal S; Schwartzentruber TE; Srinivasan SG; van Duin AC
    J Phys Chem A; 2013 Apr; 117(13):2692-703. PubMed ID: 23438070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-level study of adsorption, conformational change, and dimerization of an α-helical peptide at graphene surface.
    Ou L; Luo Y; Wei G
    J Phys Chem B; 2011 Aug; 115(32):9813-22. PubMed ID: 21692466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tearing graphene sheets from adhesive substrates produces tapered nanoribbons.
    Sen D; Novoselov KS; Reis PM; Buehler MJ
    Small; 2010 May; 6(10):1108-16. PubMed ID: 20449852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of hyperthermal reactions at the gas-liquid interface: O (3P) and squalane.
    Kim D; Schatz GC
    J Phys Chem A; 2007 Jun; 111(23):5019-31. PubMed ID: 17511430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unrestricted study of the Eley-Rideal formation of H(2) on graphene using a new multidimensional graphene-H-H potential: role of the substrate.
    Bachellerie D; Sizun M; Aguillon F; Teillet-Billy D; Rougeau N; Sidis V
    Phys Chem Chem Phys; 2009 Apr; 11(15):2715-29. PubMed ID: 19421530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between hydrogen flux and carbon monolayer on SiC(0001): graphene formation kinetics.
    Deretzis I; La Magna A
    Nanoscale; 2013 Jan; 5(2):671-80. PubMed ID: 23223677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knitted graphene-nanoribbon sheet: a mechanically robust structure.
    Wei N; Fan Z; Xu LQ; Zheng YP; Wang HQ; Zheng JC
    Nanoscale; 2012 Feb; 4(3):785-91. PubMed ID: 22170502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperthermal oxidation of graphite and diamond.
    Paci JT; Minton TK; Schatz GC
    Acc Chem Res; 2012 Nov; 45(11):1973-81. PubMed ID: 22694904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of a two-dimensional hexagonal boron nitride monolayer: a first-principles study.
    Zhao Y; Wu X; Yang J; Zeng XC
    Phys Chem Chem Phys; 2012 Apr; 14(16):5545-50. PubMed ID: 22407363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-sheet-effect-inspired graphene sensors: design, fabrication and characterization.
    Rao FB; Almumen H; Fan Z; Li W; Dong LX
    Nanotechnology; 2012 Mar; 23(10):105501. PubMed ID: 22348946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies of hyperthermal O(3P) collisions with hydrocarbon self-assembled monolayers.
    Troya D; Schatz GC
    J Chem Phys; 2004 Apr; 120(16):7696-707. PubMed ID: 15267681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A DFT study of halogen atoms adsorbed on graphene layers.
    Medeiros PV; Mascarenhas AJ; de Brito Mota F; de Castilho CM
    Nanotechnology; 2010 Dec; 21(48):485701. PubMed ID: 21063056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale modeling of interaction of alane clusters on Al(111) surfaces: a reactive force field and infrared absorption spectroscopy approach.
    Ojwang JG; Chaudhuri S; van Duin AC; Chabal YJ; Veyan JF; van Santen R; Kramer GJ; Goddard WA
    J Chem Phys; 2010 Feb; 132(8):084509. PubMed ID: 20192309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure, stability and defects of single layer hexagonal BN in comparison to graphene.
    Slotman GJ; Fasolino A
    J Phys Condens Matter; 2013 Jan; 25(4):045009. PubMed ID: 23249480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of single layer graphene on nickel under far-from-equilibrium high flux conditions.
    Neyts EC; van Duin AC; Bogaerts A
    Nanoscale; 2013 Aug; 5(16):7250-5. PubMed ID: 23695014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping of metal atoms in the defects on graphene.
    Tang Y; Yang Z; Dai X
    J Chem Phys; 2011 Dec; 135(22):224704. PubMed ID: 22168716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.