These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 21943287)

  • 1. Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta biomass.
    Lakaniemi AM; Hulatt CJ; Thomas DN; Tuovinen OH; Puhakka JA
    Biotechnol Biofuels; 2011 Sep; 4(1):34. PubMed ID: 21943287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production.
    Carver SM; Hulatt CJ; Thomas DN; Tuovinen OH
    Biodegradation; 2011 Jul; 22(4):805-14. PubMed ID: 20878208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of microalgae species and solution salinity on algal treatment of wastewater reverse osmosis concentrate.
    Mohseni A; Fan L; Roddick FA
    Chemosphere; 2021 Dec; 285():131487. PubMed ID: 34273703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of Dunaliella tertiolecta and associated bacteria in photobioreactors.
    Lakaniemi AM; Intihar VM; Tuovinen OH; Puhakka JA
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1357-65. PubMed ID: 22576958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Stage Cultivation of Dunaliella tertiolecta with Glycerol and Triethylamine for Lipid Accumulation: a Viable Way To Alleviate the Inhibitory Effect of Triethylamine on Biomass.
    Liang MH; Xue LL; Jiang JG
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA-Seq transcriptomic analysis with Bag2D software identifies key pathways enhancing lipid yield in a high lipid-producing mutant of the non-model green alga Dunaliella tertiolecta.
    Yao L; Tan TW; Ng YK; Ban KH; Shen H; Lin H; Lee YK
    Biotechnol Biofuels; 2015; 8():191. PubMed ID: 26613001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.
    Lakaniemi AM; Hulatt CJ; Wakeman KD; Thomas DN; Puhakka JA
    Bioresour Technol; 2012 Nov; 124():387-93. PubMed ID: 22995170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.
    Oukarroum A; Bras S; Perreault F; Popovic R
    Ecotoxicol Environ Saf; 2012 Apr; 78():80-5. PubMed ID: 22138148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methane and hydrogen exhalation in normal children and in lactose malabsorption.
    Tormo R; Bertaccini A; Conde M; Infante D; Cura I
    Early Hum Dev; 2001 Nov; 65 Suppl():S165-72. PubMed ID: 11755048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing 2 -Bio- (H
    Hassan GK; Jones RJ; Massanet-Nicolau J; Dinsdale R; Abo-Aly MM; El-Gohary FA; Guwy A
    Waste Manag; 2021 Jun; 129():20-25. PubMed ID: 34020372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous biogas production from fodder beet silage as sole substrate.
    Scherer PA; Dobler S; Rohardt S; Loock R; Büttner B; Nöldeke P; Brettschuh A
    Water Sci Technol; 2003; 48(4):229-33. PubMed ID: 14531447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermophilic Alkaline Fermentation Followed by Mesophilic Anaerobic Digestion for Efficient Hydrogen and Methane Production from Waste-Activated Sludge: Dynamics of Bacterial Pathogens as Revealed by the Combination of Metagenomic and Quantitative PCR Analyses.
    Wan J; Jing Y; Rao Y; Zhang S; Luo G
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient methane generation from untreated microalgae biomass.
    Klassen V; Blifernez-Klassen O; Wibberg D; Winkler A; Kalinowski J; Posten C; Kruse O
    Biotechnol Biofuels; 2017; 10():186. PubMed ID: 28725266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae.
    Lü F; Ji J; Shao L; He P
    Biotechnol Biofuels; 2013 Jul; 6(1):92. PubMed ID: 23815806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced bioenergy recovery from oil-extracted microalgae residues via two-step H2/CH4 or H2/butanol anaerobic fermentation.
    Cheng HH; Whang LM; Wu SH
    Biotechnol J; 2016 Mar; 11(3):375-83. PubMed ID: 26663890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microalgae as a raw material for biofuels production.
    Gouveia L; Oliveira AC
    J Ind Microbiol Biotechnol; 2009 Feb; 36(2):269-74. PubMed ID: 18982369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesophilic and thermophilic anaerobic digestion of municipal sludge and fat, oil, and grease.
    Kabouris JC; Tezel U; Pavlostathis SG; Engelmann M; Dulaney JA; Todd AC; Gillette RA
    Water Environ Res; 2009 May; 81(5):476-85. PubMed ID: 19472939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biohydrogen production by Chlorella vulgaris and Scenedesmus obliquus immobilized cultivated in artificial wastewater under different light quality.
    Ruiz-Marin A; Canedo-López Y; Chávez-Fuentes P
    AMB Express; 2020 Oct; 10(1):191. PubMed ID: 33108605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biohythane production via single-stage anaerobic fermentation using entrapped hydrogenic and methanogenic bacteria.
    Ta DT; Lin CY; Ta TMN; Chu CY
    Bioresour Technol; 2020 Mar; 300():122702. PubMed ID: 31918294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.