BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21943414)

  • 1. Landscape, flux, correlation, resonance, coherence, stability, and key network wirings of stochastic circadian oscillation.
    Li C; Wang E; Wang J
    Biophys J; 2011 Sep; 101(6):1335-44. PubMed ID: 21943414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential landscape and probabilistic flux of a predator prey network.
    Li C; Wang E; Wang J
    PLoS One; 2011 Mar; 6(3):e17888. PubMed ID: 21423576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential landscape and flux framework of nonequilibrium networks: robustness, dissipation, and coherence of biochemical oscillations.
    Wang J; Xu L; Wang E
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12271-6. PubMed ID: 18719111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robustness, dissipations and coherence of the oscillation of circadian clock: potential landscape and flux perspectives.
    Wang J; Xu L; Wang E
    PMC Biophys; 2008 Dec; 1(1):7. PubMed ID: 19351381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustness and coherence of a three-protein circadian oscillator: landscape and flux perspectives.
    Wang J; Xu L; Wang E
    Biophys J; 2009 Dec; 97(11):3038-46. PubMed ID: 19948134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations.
    Li C; Wang E; Wang J
    J Chem Phys; 2012 May; 136(19):194108. PubMed ID: 22612081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network.
    Wang J; Li C; Wang E
    Proc Natl Acad Sci U S A; 2010 May; 107(18):8195-200. PubMed ID: 20393126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landscape and flux govern cellular mode-hopping between oscillations.
    Li C; Ye L
    J Chem Phys; 2019 Nov; 151(17):175101. PubMed ID: 31703512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium landscape theory of neural networks.
    Yan H; Zhao L; Hu L; Wang X; Wang E; Wang J
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):E4185-94. PubMed ID: 24145451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energy pump and the origin of the non-equilibrium flux of the dynamical systems and the networks.
    Xu L; Shi H; Feng H; Wang J
    J Chem Phys; 2012 Apr; 136(16):165102. PubMed ID: 22559506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the Underlying Mechanisms of the Xenopus laevis Embryonic Cell Cycle.
    Zhang K; Wang J
    J Phys Chem B; 2018 May; 122(21):5487-5499. PubMed ID: 29310435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landscape and global stability of nonadiabatic and adiabatic oscillations in a gene network.
    Feng H; Han B; Wang J
    Biophys J; 2012 Mar; 102(5):1001-10. PubMed ID: 22404922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the stochastic transition mechanism between oscillation states by the landscape and the minimum action path theory.
    Lang J; Li C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20050-20063. PubMed ID: 35786725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.
    Wu W; Wang J
    J Chem Phys; 2013 Sep; 139(12):121920. PubMed ID: 24089732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic models for circadian rhythms: effect of molecular noise on periodic and chaotic behaviour.
    Gonze D; Halloy J; Leloup JC; Goldbeter A
    C R Biol; 2003 Feb; 326(2):189-203. PubMed ID: 12754937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape-Flux Framework for Nonequilibrium Dynamics and Thermodynamics of Open Hamiltonian Systems Coupled to Multiple Heat Baths.
    Wu W; Wang J
    J Phys Chem B; 2021 Jul; 125(28):7809-7827. PubMed ID: 34232645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unifying deterministic and stochastic ecological dynamics via a landscape-flux approach.
    Xu L; Patterson D; Staver AC; Levin SA; Wang J
    Proc Natl Acad Sci U S A; 2021 Jun; 118(24):. PubMed ID: 34117123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms and molecular noise.
    Gonze D; Goldbeter A
    Chaos; 2006 Jun; 16(2):026110. PubMed ID: 16822042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape topography determines global stability and robustness of a metabolic network.
    Li C; Wang E; Wang J
    ACS Synth Biol; 2012 Jun; 1(6):229-39. PubMed ID: 23651205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator.
    Smolen P; Baxter DA; Byrne JH
    Biophys J; 2002 Nov; 83(5):2349-59. PubMed ID: 12414672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.