These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21943428)

  • 1. Direct measurements of the mechanical stability of zinc-thiolate bonds in rubredoxin by single-molecule atomic force microscopy.
    Zheng P; Li H
    Biophys J; 2011 Sep; 101(6):1467-73. PubMed ID: 21943428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Measurements of the Cobalt-Thiolate Bonds Strength in Rubredoxin by Single-Molecule Force Spectroscopy.
    Shi S; Wu T; Zheng P
    Chembiochem; 2022 Jun; 23(12):e202200165. PubMed ID: 35475313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin.
    Zheng P; Chou CC; Guo Y; Wang Y; Li H
    J Am Chem Soc; 2013 Nov; 135(47):17783-92. PubMed ID: 24171546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen bond strength modulates the mechanical strength of ferric-thiolate bonds in rubredoxin.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2012 Mar; 134(9):4124-31. PubMed ID: 22309227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single molecule force spectroscopy reveals that iron is released from the active site of rubredoxin by a stochastic mechanism.
    Zheng P; Takayama SJ; Mauk AG; Li H
    J Am Chem Soc; 2013 May; 135(21):7992-8000. PubMed ID: 23627554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zinc- and iron-rubredoxins from Clostridium pasteurianum at atomic resolution: a high-precision model of a ZnS4 coordination unit in a protein.
    Dauter Z; Wilson KS; Sieker LC; Moulis JM; Meyer J
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8836-40. PubMed ID: 8799113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible unfolding-refolding of rubredoxin: a single-molecule force spectroscopy study.
    Zheng P; Wang Y; Li H
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14060-3. PubMed ID: 25314323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PF0610, a novel winged helix-turn-helix variant possessing a rubredoxin-like Zn ribbon motif from the hyperthermophilic archaeon, Pyrococcus furiosus.
    Wang X; Lee HS; Sugar FJ; Jenney FE; Adams MW; Prestegard JH
    Biochemistry; 2007 Jan; 46(3):752-61. PubMed ID: 17223696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-sulfur Proteins.
    Li J; Li H
    J Phys Chem B; 2018 Oct; 122(40):9340-9349. PubMed ID: 30212202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermostability in rubredoxin and its relationship to mechanical rigidity.
    Rader AJ
    Phys Biol; 2009 Dec; 7():16002. PubMed ID: 20009190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
    Blake PR; Park JB; Zhou ZH; Hare DR; Adams MW; Summers MF
    Protein Sci; 1992 Nov; 1(11):1508-21. PubMed ID: 1303769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation.
    Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q
    J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of protein hyperthermostability: purification and amino acid sequence of rubredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus and secondary structure of the zinc adduct by NMR.
    Blake PR; Park JB; Bryant FO; Aono S; Magnuson JK; Eccleston E; Howard JB; Summers MF; Adams MW
    Biochemistry; 1991 Nov; 30(45):10885-95. PubMed ID: 1932012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure.
    Prakash S; Sundd M; Guptasarma P
    PLoS One; 2014; 9(3):e89703. PubMed ID: 24603898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutron diffraction studies on rubredoxin from Pyrococcus furiosus.
    Bau R
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):76-9. PubMed ID: 14646139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of a zinc substituted eukaryotic rubredoxin from the cryptomonad alga Guillardia theta.
    Schweimer K; Hoffmann S; Wastl J; Maier UG; Rösch P; Sticht H
    Protein Sci; 2000 Aug; 9(8):1474-86. PubMed ID: 10975569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule.
    Zheng P; Arantes GM; Field MJ; Li H
    Nat Commun; 2015 Jun; 6():7569. PubMed ID: 26108369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additivity of differential conformational dynamics in hyperthermophile/mesophile rubredoxin chimeras as monitored by hydrogen exchange.
    LeMaster DM; Hernández G
    Chembiochem; 2006 Dec; 7(12):1886-9. PubMed ID: 17068837
    [No Abstract]   [Full Text] [Related]  

  • 19. De novo design of a redox-active minimal rubredoxin mimic.
    Nanda V; Rosenblatt MM; Osyczka A; Kono H; Getahun Z; Dutton PL; Saven JG; Degrado WF
    J Am Chem Soc; 2005 Apr; 127(16):5804-5. PubMed ID: 15839675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR and X-ray analysis of structural additivity in metal binding site-swapped hybrids of rubredoxin.
    LeMaster DM; Anderson JS; Wang L; Guo Y; Li H; Hernández G
    BMC Struct Biol; 2007 Dec; 7():81. PubMed ID: 18053245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.