These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21943568)

  • 1. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.
    Gori R; Jiang LM; Sobhani R; Rosso D
    Water Res; 2011 Nov; 45(18):5858-72. PubMed ID: 21943568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of primary sedimentation on plant-wide energy recovery and carbon footprint.
    Gori R; Giaccherini F; Jiang LM; Sobhani R; Rosso D
    Water Sci Technol; 2013; 68(4):870-8. PubMed ID: 23985518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.
    Ekama GA
    Water Res; 2009 May; 43(8):2101-20. PubMed ID: 19345392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes.
    Rosso D; Lothman SE; Jeung MK; Pitt P; Gellner WJ; Stone AL; Howard D
    Water Res; 2011 Nov; 45(18):5987-96. PubMed ID: 21940032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.
    Remy C; Lesjean B; Waschnewski J
    Water Sci Technol; 2013; 67(1):63-73. PubMed ID: 23128622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.
    Puig S; van Loosdrecht MC; Flameling AG; Colprim J; Meijer SC
    Water Res; 2010 Jun; 44(11):3375-84. PubMed ID: 20430413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater.
    Shin C; Lee E; McCarty PL; Bae J
    Bioresour Technol; 2011 Nov; 102(21):9860-5. PubMed ID: 21906938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design procedure for carbon removal in contact stabilization activated sludge process.
    Sarioğlu M; Orhon D; Görgün E; Artan N
    Water Sci Technol; 2003; 48(11-12):285-92. PubMed ID: 14753548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.
    Park ND; Thring RW; Garton RP; Rutherford MP; Helle SS
    Water Sci Technol; 2011; 64(9):1851-6. PubMed ID: 22020478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic stabilisation of sludge produced during municipal wastewater treatment by electrocoagulation.
    Hutnan M; Drtil M; Kalina A
    J Hazard Mater; 2006 Apr; 131(1-3):163-9. PubMed ID: 16297548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry.
    Foladori P; Bruni L; Tamburini S; Ziglio G
    Water Res; 2010 Jul; 44(13):3807-18. PubMed ID: 20537673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic co-digestion of surplus yeast and wastewater to increase energy recovery in breweries.
    Neira K; Jeison D
    Water Sci Technol; 2010; 61(5):1129-35. PubMed ID: 20220234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-nitrification by encapsulated nitrifiers--a possibility for self-sufficient energy operation of domestic WWTPs.
    Sievers M; Vorlop KD; Hahne J; Schlieker M; Schäfer S
    Water Sci Technol; 2003; 47(11):173-80. PubMed ID: 12906287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy use and recovery strategies within wastewater treatment and sludge handling at pulp and paper mills.
    Stoica A; Sandberg M; Holby O
    Bioresour Technol; 2009 Jul; 100(14):3497-505. PubMed ID: 19307113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel application of oxygen-transferring membranes to improve anaerobic wastewater treatment.
    Kappell AS; Semmens MJ; Novak PJ; LaPara TM
    Biotechnol Bioeng; 2005 Feb; 89(4):373-80. PubMed ID: 15643630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrofitting conventional primary clarifiers to activated primary clarifiers to enhance nutrient removal and energy conservation in WWTPs in Beijing, China.
    Wang JW; Zhang TZ; Chen JN; Hu ZR
    Water Sci Technol; 2011; 63(7):1446-52. PubMed ID: 21508549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of staged and non-staged up-flow anaerobic sludge bed (USSB and UASB) reactors treating low strength complex wastewater.
    Sevilla-Espinosa S; Solórzano-Campo M; Bello-Mendoza R
    Biodegradation; 2010 Sep; 21(5):737-51. PubMed ID: 20174990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and treatment of the liquid effluents from the anaerobic digestion of biogenic solid waste.
    Graja S; Wilderer PA
    Water Sci Technol; 2001; 43(3):265-74. PubMed ID: 11381915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.