BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21943785)

  • 1. Controlling fibroblast proliferation with dimensionality-specific response by stiffness of injectable gelatin hydrogels.
    Wang LS; Chung JE; Kurisawa M
    J Biomater Sci Polym Ed; 2012; 23(14):1793-806. PubMed ID: 21943785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture.
    Wang LS; Chung JE; Chan PP; Kurisawa M
    Biomaterials; 2010 Feb; 31(6):1148-57. PubMed ID: 19892395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of chondrocyte functions and stiffness-dependent cartilage repair using an injectable enzymatically crosslinked hydrogel with tunable mechanical properties.
    Wang LS; Du C; Toh WS; Wan AC; Gao SJ; Kurisawa M
    Biomaterials; 2014 Feb; 35(7):2207-17. PubMed ID: 24333028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell.
    Wang LS; Boulaire J; Chan PP; Chung JE; Kurisawa M
    Biomaterials; 2010 Nov; 31(33):8608-16. PubMed ID: 20709390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatically cross-linked gelatin-phenol hydrogels with a broader stiffness range for osteogenic differentiation of human mesenchymal stem cells.
    Wang LS; Du C; Chung JE; Kurisawa M
    Acta Biomater; 2012 May; 8(5):1826-37. PubMed ID: 22343003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterizations of in situ cross-linkable gelatin and 4-arm-PPO-PEO hybrid hydrogels via enzymatic reaction for tissue regenerative medicine.
    Park KM; Lee Y; Son JY; Oh DH; Lee JS; Park KD
    Biomacromolecules; 2012 Mar; 13(3):604-11. PubMed ID: 22263670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxidase-immobilized porous silica particles for in situ formation of peroxidase-free hydrogels with attenuated immune responses.
    Li L; Bae KH; Ng S; Yamashita A; Kurisawa M
    Acta Biomater; 2018 Nov; 81():103-114. PubMed ID: 30273747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically tuned 3 dimensional hydrogels support human mammary fibroblast growth and viability.
    Woods K; Thigpen C; Wang JP; Park H; Hielscher A
    BMC Cell Biol; 2017 Dec; 18(1):35. PubMed ID: 29246104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Enzyme-Triggered In Situ Crosslinkable Gelatin Hydrogels for Artificial Cellular Microenvironments.
    Kim BY; Lee Y; Son JY; Park KM; Park KD
    Macromol Biosci; 2016 Nov; 16(11):1570-1576. PubMed ID: 27558086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of poly(glutamic acid)-tyramine hydrogel by enzyme-mediated gelation for controlled release of proteins.
    Peng Z; She Y; Chen L
    J Biomater Sci Polym Ed; 2015; 26(2):111-27. PubMed ID: 25421870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrinogen-Based Hydrogel Modulus and Ligand Density Effects on Cell Morphogenesis in Two-Dimensional and Three-Dimensional Cell Cultures.
    Yosef A; Kossover O; Mironi-Harpaz I; Mauretti A; Melino S; Mizrahi J; Seliktar D
    Adv Healthc Mater; 2019 Jul; 8(13):e1801436. PubMed ID: 31081289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodegradable Gelatin-Based Hydrogels Prepared by Bioorthogonal Click Chemistry for Cell Encapsulation and Release.
    Truong VX; Tsang KM; Simon GP; Boyd RL; Evans RA; Thissen H; Forsythe JS
    Biomacromolecules; 2015 Jul; 16(7):2246-53. PubMed ID: 26056855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling thermo-reversibility of gelatin gels through a peroxidase-catalyzed reaction under mild conditions for mammalian cells.
    Sakai S; Moriyama K; Kawakami K
    J Biomater Sci Polym Ed; 2011; 22(9):1147-56. PubMed ID: 20615328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells.
    Lim TC; Toh WS; Wang LS; Kurisawa M; Spector M
    Biomaterials; 2012 Apr; 33(12):3446-55. PubMed ID: 22306021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Cellular Activity in Gelatin-Poly(Ethylene Glycol) Hydrogels without Compromising Gel Stiffness.
    Hoang Thi TT; Lee JS; Lee Y; Park KM; Park KD
    Macromol Biosci; 2016 Mar; 16(3):334-40. PubMed ID: 26663697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulus-regulated 3D-cell proliferation in an injectable self-healing hydrogel.
    Li Y; Zhang Y; Shi F; Tao L; Wei Y; Wang X
    Colloids Surf B Biointerfaces; 2017 Jan; 149():168-173. PubMed ID: 27756013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formation of enzyme-free hydrogels via ferromagnetic microbead-assisted enzymatic cross-linking.
    Bae JW; Kim BY; Lih E; Choi JH; Lee Y; Park KD
    Chem Commun (Camb); 2014 Nov; 50(89):13710-3. PubMed ID: 25247682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.
    Keeney M; Onyiah S; Zhang Z; Tong X; Han LH; Yang F
    Biomaterials; 2013 Dec; 34(37):9657-65. PubMed ID: 24011715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable 3D hydrogel scaffold with tailorable porosity post-implantation.
    Al-Abboodi A; Fu J; Doran PM; Tan TT; Chan PP
    Adv Healthc Mater; 2014 May; 3(5):725-36. PubMed ID: 24151286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.