BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 21943789)

  • 1. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method.
    Wang X; Li X
    Comput Biol Med; 2011 Nov; 41(11):1014-21. PubMed ID: 21943789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fluid?structure interaction study on the biomechanical behaviour of a curved artery with flexible wall.
    Wang X; Li X
    J Med Eng Technol; 2011 Nov; 35(8):402-9. PubMed ID: 22004005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of nonlinear pulsatile flow in S-shaped curved arteries.
    Qiao AK; Guo XL; Wu SG; Zeng YJ; Xu XH
    Med Eng Phys; 2004 Sep; 26(7):545-52. PubMed ID: 15271282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influences of stenosis on the downstream flow pattern in curved arteries.
    Liu B
    Med Eng Phys; 2007 Oct; 29(8):868-76. PubMed ID: 17081795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical buckling of curved arteries.
    Han HC
    Mol Cell Biomech; 2009 Jun; 6(2):93-9. PubMed ID: 19496257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational simulation of aortic aneurysm using FSI method: influence of blood viscosity on aneurismal dynamic behaviors.
    Wang X; Li X
    Comput Biol Med; 2011 Sep; 41(9):812-21. PubMed ID: 21757193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses.
    Li MX; Beech-Brandt JJ; John LR; Hoskins PR; Easson WJ
    J Biomech; 2007; 40(16):3715-24. PubMed ID: 17723230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
    Kanyanta V; Ivankovic A; Karac A
    J Biomech; 2009 Aug; 42(11):1705-12. PubMed ID: 19482285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of blood volume flow in slightly curved arteries from a single velocity profile.
    Leguy CA; Bosboom EM; Hoeks AP; van de Vosse FN
    J Biomech; 2009 Aug; 42(11):1664-72. PubMed ID: 19481210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wall shear rate measurements in an elastic curved artery model.
    Weston MW; Tarbell JM
    Biorheology; 1997; 34(1):1-17. PubMed ID: 9176587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of saccular aneurysm hemodynamics: influence of morphology on rupture risk.
    Utter B; Rossmann JS
    J Biomech; 2007; 40(12):2716-22. PubMed ID: 17350027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new multiphysics model for the physiological responses of vascular endothelial cells to fluid shear stress.
    Kang HG; Shim EB; Chang KS
    J Physiol Sci; 2007 Oct; 57(5):299-309. PubMed ID: 17963593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: I. model and velocity analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5767-79. PubMed ID: 18824786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. shear analysis.
    Boyd J; Buick JM
    Phys Med Biol; 2008 Oct; 53(20):5781-95. PubMed ID: 18824787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular wall flow-induced forces in a progressively enlarged aneurysm model.
    Neofytou P; Tsangaris S; Kyriakidis M
    Comput Methods Biomech Biomed Engin; 2008 Dec; 11(6):615-26. PubMed ID: 18979302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small artery remodeling: current concepts and questions.
    van den Akker J; Schoorl MJ; Bakker EN; Vanbavel E
    J Vasc Res; 2010; 47(3):183-202. PubMed ID: 19893316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation.
    Wenk JF; Papadopoulos P; Zohdi TI
    J Biomech Eng; 2010 Sep; 132(9):091011. PubMed ID: 20815645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow.
    Morbiducci U; Gallo D; Massai D; Consolo F; Ponzini R; Antiga L; Bignardi C; Deriu MA; Redaelli A
    J Biomech Eng; 2010 Sep; 132(9):091005. PubMed ID: 20815639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.