BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 21944070)

  • 1. Comparison of recovery strategies on maximal force-generating capacity and electromyographic activity level of the knee extensor muscles.
    Zarrouk N; Rebai H; Yahia A; Souissi N; Hug F; Dogui M
    J Athl Train; 2011; 46(4):386-94. PubMed ID: 21944070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slower but not faster unilateral fatiguing knee extensions alter contralateral limb performance without impairment of maximal torque output.
    Prieske O; Aboodarda SJ; Benitez Sierra JA; Behm DG; Granacher U
    Eur J Appl Physiol; 2017 Feb; 117(2):323-334. PubMed ID: 28078451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue and recovery after high-intensity exercise. Part II: Recovery interventions.
    Lattier G; Millet GY; Martin A; Martin V
    Int J Sports Med; 2004 Oct; 25(7):509-15. PubMed ID: 15459831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Fatigue Are the Same for Trained Men and Women after Resistance Exercise.
    Marshall PW; Metcalf E; Hagstrom AD; Cross R; Siegler JC; Enoka RM
    Med Sci Sports Exerc; 2020 Jan; 52(1):196-204. PubMed ID: 31343516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximal voluntary eccentric, isometric and concentric torque recovery following a concentric isokinetic exercise.
    Michaut A; Pousson M; Millet G; Belleville J; Van Hoecke J
    Int J Sports Med; 2003 Jan; 24(1):51-6. PubMed ID: 12582952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isokinetic eccentric resistance training prevents loss in mechanical muscle function after running.
    Oliveira AS; Caputo F; Aagaard P; Corvino RB; Gonçalves M; Denadai BS
    Eur J Appl Physiol; 2013 Sep; 113(9):2301-11. PubMed ID: 23680937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task.
    Vernillo G; Temesi J; Martin M; Krüger RL; Millet GY
    J Neurophysiol; 2020 Sep; 124(3):763-773. PubMed ID: 32755359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromuscular fatigue development during maximal concentric and isometric knee extensions.
    Babault N; Desbrosses K; Fabre MS; Michaut A; Pousson M
    J Appl Physiol (1985); 2006 Mar; 100(3):780-5. PubMed ID: 16282433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of antagonist pre-load on knee extensor isokinetic muscle performance.
    Carregaro RL; Gentil P; Brown LE; Pinto RS; Bottaro M
    J Sports Sci; 2011 Feb; 29(3):271-8. PubMed ID: 21170798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump.
    Rouis M; Coudrat L; Jaafar H; Filliard JR; Vandewalle H; Barthelemy Y; Driss T
    J Sports Med Phys Fitness; 2015 Dec; 55(12):1502-8. PubMed ID: 25373468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antagonist moment of force during maximal knee extension in pubertal boys: effects of quadriceps fatigue.
    Kellis E
    Eur J Appl Physiol; 2003 May; 89(3-4):271-80. PubMed ID: 12736835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of between-set interventions on neuromuscular function during isokinetic maximal concentric contractions of the knee extensors.
    Cometti C; Deley G; Babault N
    J Sports Sci Med; 2011; 10(4):624-9. PubMed ID: 24149550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central and peripheral fatigue of the knee extensor muscles induced by electromyostimulation.
    Zory R; Boërio D; Jubeau M; Maffiuletti NA
    Int J Sports Med; 2005 Dec; 26(10):847-53. PubMed ID: 16320169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength athletes are capable to produce greater muscle activation and neural fatigue during high-intensity resistance exercise than nonathletes.
    Ahtiainen JP; Häkkinen K
    J Strength Cond Res; 2009 Jul; 23(4):1129-34. PubMed ID: 19528869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agonist and antagonist muscle activation during maximal and submaximal isokinetic fatigue tests of the knee extensors.
    Hassani A; Patikas D; Bassa E; Hatzikotoulas K; Kellis E; Kotzamanidis C
    J Electromyogr Kinesiol; 2006 Dec; 16(6):661-8. PubMed ID: 16434213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigability of the knee extensors following high- and low-load resistance exercise sessions in trained men.
    Marshall PW; Forward T; Enoka RM
    Eur J Appl Physiol; 2022 Jan; 122(1):245-254. PubMed ID: 34669044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue.
    Baroni BM; Leal Junior EC; Geremia JM; Diefenthaeler F; Vaz MA
    Photomed Laser Surg; 2010 Oct; 28(5):653-8. PubMed ID: 20626264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Central and peripheral contributions to fatigue after electrostimulation training.
    Gondin J; Guette M; Jubeau M; Ballay Y; Martin A
    Med Sci Sports Exerc; 2006 Jun; 38(6):1147-56. PubMed ID: 16775557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why does knee extensor muscles torque decrease after eccentric-type exercise?
    Martin V; Millet GY; Lattier G; Perrod L
    J Sports Med Phys Fitness; 2005 Jun; 45(2):143-51. PubMed ID: 16355074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course of mechanical and neuromuscular characteristics of cyclists and triathletes during a fatiguing exercise.
    Garrandes F; Colson SS; Pensini M; Legros P
    Int J Sports Med; 2007 Feb; 28(2):148-56. PubMed ID: 17024624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.