These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Efficient synthesis and in vitro antitubercular activity of 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis. Shanmugavelan P; Nagarajan S; Sathishkumar M; Ponnuswamy A; Yogeeswari P; Sriram D Bioorg Med Chem Lett; 2011 Dec; 21(24):7273-6. PubMed ID: 22061642 [TBL] [Abstract][Full Text] [Related]
6. Discovery of novel InhA reductase inhibitors: application of pharmacophore- and shape-based screening approach. Kumar UC; Bvs SK; Mahmood S; D S; Kumar-Sahu P; Pulakanam S; Ballell L; Alvarez-Gomez D; Malik S; Jarp S Future Med Chem; 2013 Mar; 5(3):249-59. PubMed ID: 23464516 [TBL] [Abstract][Full Text] [Related]
7. High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. Sullivan TJ; Truglio JJ; Boyne ME; Novichenok P; Zhang X; Stratton CF; Li HJ; Kaur T; Amin A; Johnson F; Slayden RA; Kisker C; Tonge PJ ACS Chem Biol; 2006 Feb; 1(1):43-53. PubMed ID: 17163639 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of Mycobacterium tuberculosis InhA: Design, synthesis and evaluation of new di-triclosan derivatives. Armstrong T; Lamont M; Lanne A; Alderwick LJ; Thomas NR Bioorg Med Chem; 2020 Nov; 28(22):115744. PubMed ID: 33007556 [TBL] [Abstract][Full Text] [Related]
9. Application of Huisgen (3+2) cycloaddition reaction: synthesis of 1-(2,3-dihydrobenzofuran-2-yl-methyl [1,2,3]-triazoles and their antitubercular evaluations. Tripathi RP; Yadav AK; Ajay A; Bisht SS; Chaturvedi V; Sinha SK Eur J Med Chem; 2010 Jan; 45(1):142-8. PubMed ID: 19846238 [TBL] [Abstract][Full Text] [Related]
10. Biological evaluation of potent triclosan-derived inhibitors of the enoyl-acyl carrier protein reductase InhA in drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis. Stec J; Vilchèze C; Lun S; Perryman AL; Wang X; Freundlich JS; Bishai W; Jacobs WR; Kozikowski AP ChemMedChem; 2014 Nov; 9(11):2528-37. PubMed ID: 25165007 [TBL] [Abstract][Full Text] [Related]
11. Development of isoniazid-NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents. Delaine T; Bernardes-Génisson V; Quémard A; Constant P; Meunier B; Bernadou J Eur J Med Chem; 2010 Oct; 45(10):4554-61. PubMed ID: 20696503 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis. Matviiuk T; Mori G; Lherbet C; Rodriguez F; Pasca MR; Gorichko M; Guidetti B; Voitenko Z; Baltas M Eur J Med Chem; 2014 Jan; 71():46-52. PubMed ID: 24269516 [TBL] [Abstract][Full Text] [Related]
13. Pharmacophore mapping, molecular docking, chemical synthesis of some novel pyrrolyl benzamide derivatives and evaluation of their inhibitory activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Joshi SD; Dixit SR; Basha J; Kulkarni VH; Aminabhavi TM; Nadagouda MN; Lherbet C Bioorg Chem; 2018 Dec; 81():440-453. PubMed ID: 30223149 [TBL] [Abstract][Full Text] [Related]
14. Design and synthesis of 9H-fluorenone based 1,2,3-triazole analogues as Mycobacterium tuberculosis InhA inhibitors. Suresh A; Srinivasarao S; Agnieszka N; Ewa AK; Alvala M; Lherbet C; Chandra Sekhar KVG Chem Biol Drug Des; 2018 Jun; 91(6):1078-1086. PubMed ID: 29063733 [TBL] [Abstract][Full Text] [Related]
15. Chemical synthesis and in silico molecular modeling of novel pyrrolyl benzohydrazide derivatives: Their biological evaluation against enoyl ACP reductase (InhA) and Mycobacterium tuberculosis. Joshi SD; More UA; Dixit SR; Balmi SV; Kulkarni BG; Ullagaddi G; Lherbet C; Aminabhavi TM Bioorg Chem; 2017 Dec; 75():181-200. PubMed ID: 28961440 [TBL] [Abstract][Full Text] [Related]
16. New coumarin linked thiazole derivatives as antimycobacterial agents: Design, synthesis, enoyl acyl carrier protein reductase (InhA) inhibition and molecular modeling. Kassem AF; Sabt A; Korycka-Machala M; Shaldam MA; Kawka M; Dziadek B; Kuzioła M; Dziadek J; Batran RZ Bioorg Chem; 2024 Sep; 150():107511. PubMed ID: 38870705 [TBL] [Abstract][Full Text] [Related]
17. Structure-based design of a novel class of potent inhibitors of InhA, the enoyl acyl carrier protein reductase from Mycobacterium tuberculosis: a computer modelling approach. Subba Rao G; Vijayakrishnan R; Kumar M Chem Biol Drug Des; 2008 Nov; 72(5):444-9. PubMed ID: 19012578 [TBL] [Abstract][Full Text] [Related]
18. Synthesis of quinoline coupled [1,2,3]-triazoles as a promising class of anti-tuberculosis agents. Karthik Kumar K; Prabu Seenivasan S; Kumar V; Mohan Das T Carbohydr Res; 2011 Oct; 346(14):2084-90. PubMed ID: 21767828 [TBL] [Abstract][Full Text] [Related]
19. Design and synthesis of thiourea-based derivatives as Mycobacterium tuberculosis growth and enoyl acyl carrier protein reductase (InhA) inhibitors. Doğan ŞD; Gündüz MG; Doğan H; Krishna VS; Lherbet C; Sriram D Eur J Med Chem; 2020 Aug; 199():112402. PubMed ID: 32417538 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. He X; Alian A; Ortiz de Montellano PR Bioorg Med Chem; 2007 Nov; 15(21):6649-58. PubMed ID: 17723305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]