These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21944705)

  • 1. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil.
    Lee YC; Kim EJ; Ko DA; Yang JW
    J Hazard Mater; 2011 Nov; 196():101-8. PubMed ID: 21944705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved pH-dependent drug release and oral exposure of telmisartan, a poorly soluble drug through the formation of drug-aminoclay complex.
    Yang L; Shao Y; Han HK
    Int J Pharm; 2014 Aug; 471(1-2):258-63. PubMed ID: 24834880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental applications of chitosan and its derivatives.
    Yong SK; Shrivastava M; Srivastava P; Kunhikrishnan A; Bolan N
    Rev Environ Contam Toxicol; 2015; 233():1-43. PubMed ID: 25367132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils.
    Yang ZH; Dong CD; Chen CW; Sheu YT; Kao CM
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5231-5242. PubMed ID: 28528500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin.
    Maturi K; Reddy KR
    Chemosphere; 2006 May; 63(6):1022-31. PubMed ID: 16289242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.
    Malandrino M; Abollino O; Buoso S; Giacomino A; La Gioia C; Mentasti E
    Chemosphere; 2011 Jan; 82(2):169-78. PubMed ID: 21055788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil.
    Kulikowska D; Gusiatin ZM; Bułkowska K; Kierklo K
    Chemosphere; 2015 Oct; 136():42-9. PubMed ID: 25935698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modified SBA-15 mesoporous silica for heavy metal ions remediation.
    Mureseanu M; Reiss A; Stefanescu I; David E; Parvulescu V; Renard G; Hulea V
    Chemosphere; 2008 Nov; 73(9):1499-504. PubMed ID: 18760443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of heavy metals in soil using two organo-bentonites.
    Yu K; Xu J; Jiang X; Liu C; McCall W; Lu J
    Chemosphere; 2017 Oct; 184():884-891. PubMed ID: 28651314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of phenanthrene adsorption on a clayey soil and clay minerals by coexisting lead or cadmium.
    Zhang W; Zhuang L; Yuan Y; Tong L; Tsang DC
    Chemosphere; 2011 Apr; 83(3):302-10. PubMed ID: 21232783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological permeable reactive barriers coupled with electrokinetic soil flushing for the treatment of diesel-polluted clay soil.
    Mena E; Ruiz C; Villaseñor J; Rodrigo MA; Cañizares P
    J Hazard Mater; 2015; 283():131-9. PubMed ID: 25262485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physico-chemical properties and leaching behaviors of phosphatic clay for immobilizing heavy metals.
    Hwang A; Ji W; Kweon B; Khim J
    Chemosphere; 2008 Jan; 70(6):1141-5. PubMed ID: 17910974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlordecone retention in the fractal structure of volcanic clay.
    Woignier T; Clostre F; Macarie H; Jannoyer M
    J Hazard Mater; 2012 Nov; 241-242():224-30. PubMed ID: 23062511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of clay to remediate cadmium contaminated soil under different water management regimes.
    Li J; Xu Y
    Ecotoxicol Environ Saf; 2017 Jul; 141():107-112. PubMed ID: 28319859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of heavy metals in two contaminated soils using a modified magnesium silicate stabilizer.
    Yuan X; Xiong T; Wang H; Wu Z; Jiang L; Zeng G; Li Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32562-32571. PubMed ID: 30242649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and distribution of biosolids-derived trace metals in a clay loam soil.
    Sukkariyah BF; Evanylo G; Zelazny L; Chaney RL
    J Environ Qual; 2005; 34(5):1843-50. PubMed ID: 16151236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of multiple-metals from contaminated clay minerals.
    Li LY
    Environ Technol; 2006 Jul; 27(7):811-22. PubMed ID: 16894825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing As availability in calcareous soils using nanoscale zero valent iron.
    Azari P; Bostani AA
    Environ Sci Pollut Res Int; 2017 Sep; 24(25):20438-20445. PubMed ID: 28707247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.