BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 21945165)

  • 1. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells.
    He G; Gu Y; He S; Schröder U; Chen S; Hou H
    Bioresour Technol; 2011 Nov; 102(22):10763-6. PubMed ID: 21945165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells.
    Liu Y; Harnisch F; Fricke K; Schröder U; Climent V; Feliu JM
    Biosens Bioelectron; 2010 May; 25(9):2167-71. PubMed ID: 20189793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities.
    Larrosa-Guerrero A; Scott K; Katuri KP; Godinez C; Head IM; Curtis T
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1699-713. PubMed ID: 20473665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.
    Zhuang L; Zhou S; Yuan Y; Liu T; Wu Z; Cheng J
    Bioresour Technol; 2011 Jan; 102(1):284-9. PubMed ID: 20598528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube powders as electrode modifier to enhance the activity of anodic biofilm in microbial fuel cells.
    Liang P; Wang H; Xia X; Huang X; Mo Y; Cao X; Fan M
    Biosens Bioelectron; 2011 Feb; 26(6):3000-4. PubMed ID: 21190836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.
    Yang Y; Sun G; Guo J; Xu M
    Bioresour Technol; 2011 Jul; 102(14):7093-8. PubMed ID: 21571526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors affecting current production in microbial fuel cells using different industrial wastewaters.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K
    Bioresour Technol; 2011 Apr; 102(8):5105-12. PubMed ID: 21345669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.
    Pinto D; Coradin T; Laberty-Robert C
    Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Microbial fuel cells as an alternative power supply].
    Il'in VK; Smirnov IA; Soldatov PÉ; Korshunov DV; Tiurin-Kuz'min AIu; Starkova LV; Chumakov PE; Emel'ianova LK; Novikova LM; Debabov VG; Voeĭkova TA
    Aviakosm Ekolog Med; 2012; 46(1):62-7. PubMed ID: 22629587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.
    Torres CI; Kato Marcus A; Rittmann BE
    Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power overshoot in two-chambered microbial fuel cell (MFC).
    Nien PC; Lee CY; Ho KC; Adav SS; Liu L; Wang A; Ren N; Lee DJ
    Bioresour Technol; 2011 Apr; 102(7):4742-6. PubMed ID: 21295969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar energy powered microbial fuel cell with a reversible bioelectrode.
    Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Jan; 44(1):532-7. PubMed ID: 19961218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells.
    Ter Heijne A; Strik DP; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Sep; 44(18):7151-6. PubMed ID: 20715764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):641-6. PubMed ID: 21050727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microbial fuel cells at microbially and electrochemically meaningful time scales.
    Ren Z; Yan H; Wang W; Mench MM; Regan JM
    Environ Sci Technol; 2011 Mar; 45(6):2435-41. PubMed ID: 21329346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.