These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21945347)
1. Biomedical events extraction using the hidden vector state model. Zhou D; He Y Artif Intell Med; 2011 Nov; 53(3):205-13. PubMed ID: 21945347 [TBL] [Abstract][Full Text] [Related]
2. Semi-supervised learning of the hidden vector state model for extracting protein-protein interactions. Zhou D; He Y; Kwoh CK Artif Intell Med; 2007 Nov; 41(3):209-22. PubMed ID: 17702552 [TBL] [Abstract][Full Text] [Related]
3. Ranking support vector machine for multiple kernels output combination in protein-protein interaction extraction from biomedical literature. Yang Z; Lin Y; Wu J; Tang N; Lin H; Li Y Proteomics; 2011 Oct; 11(19):3811-7. PubMed ID: 21834129 [TBL] [Abstract][Full Text] [Related]
4. Multiple kernel learning in protein-protein interaction extraction from biomedical literature. Yang Z; Tang N; Zhang X; Lin H; Li Y; Yang Z Artif Intell Med; 2011 Mar; 51(3):163-73. PubMed ID: 21208788 [TBL] [Abstract][Full Text] [Related]
5. Recognizing names in biomedical texts: a machine learning approach. Zhou G; Zhang J; Su J; Shen D; Tan C Bioinformatics; 2004 May; 20(7):1178-90. PubMed ID: 14871877 [TBL] [Abstract][Full Text] [Related]
6. A semi-supervised learning framework for biomedical event extraction based on hidden topics. Zhou D; Zhong D Artif Intell Med; 2015 May; 64(1):51-8. PubMed ID: 25863986 [TBL] [Abstract][Full Text] [Related]
7. A mouse protein interactome through combined literature mining with multiple sources of interaction evidence. Li X; Cai H; Xu J; Ying S; Zhang Y Amino Acids; 2010 Apr; 38(4):1237-52. PubMed ID: 19669079 [TBL] [Abstract][Full Text] [Related]
8. Event extraction with complex event classification using rich features. Miwa M; Saetre R; Kim JD; Tsujii J J Bioinform Comput Biol; 2010 Feb; 8(1):131-46. PubMed ID: 20183879 [TBL] [Abstract][Full Text] [Related]
9. Discovering novel protein-protein interactions by measuring the protein semantic similarity from the biomedical literature. Chiang JH; Ju JH J Bioinform Comput Biol; 2014 Dec; 12(6):1442008. PubMed ID: 25385082 [TBL] [Abstract][Full Text] [Related]
10. Extracting Protein-Protein Interactions from MEDLINE using the Hidden Vector State model. Zhou D; He Y; Kwoh CK Int J Bioinform Res Appl; 2008; 4(1):64-80. PubMed ID: 18283029 [TBL] [Abstract][Full Text] [Related]
11. Kernel approaches for genic interaction extraction. Kim S; Yoon J; Yang J Bioinformatics; 2008 Jan; 24(1):118-26. PubMed ID: 18003645 [TBL] [Abstract][Full Text] [Related]
12. Neighborhood hash graph kernel for protein-protein interaction extraction. Zhang Y; Lin H; Yang Z; Li Y J Biomed Inform; 2011 Dec; 44(6):1086-92. PubMed ID: 21884822 [TBL] [Abstract][Full Text] [Related]
13. Extracting semantically enriched events from biomedical literature. Miwa M; Thompson P; McNaught J; Kell DB; Ananiadou S BMC Bioinformatics; 2012 May; 13():108. PubMed ID: 22621266 [TBL] [Abstract][Full Text] [Related]
15. A robust approach to extract biomedical events from literature. Bui QC; Sloot PM Bioinformatics; 2012 Oct; 28(20):2654-61. PubMed ID: 22859502 [TBL] [Abstract][Full Text] [Related]
16. Extracting interactions between proteins from the literature. Zhou D; He Y J Biomed Inform; 2008 Apr; 41(2):393-407. PubMed ID: 18207462 [TBL] [Abstract][Full Text] [Related]
17. Multiple-level biomedical event trigger recognition with transfer learning. Chen Y BMC Bioinformatics; 2019 Sep; 20(1):459. PubMed ID: 31492112 [TBL] [Abstract][Full Text] [Related]
18. Biomolecular event trigger detection using neighborhood hash features. Zhang Y; Lin H; Yang Z; Wang J; Li Y J Theor Biol; 2013 Feb; 318():22-8. PubMed ID: 23137834 [TBL] [Abstract][Full Text] [Related]
19. Extracting human protein interactions from MEDLINE using a full-sentence parser. Daraselia N; Yuryev A; Egorov S; Novichkova S; Nikitin A; Mazo I Bioinformatics; 2004 Mar; 20(5):604-11. PubMed ID: 15033866 [TBL] [Abstract][Full Text] [Related]
20. Using machine learning techniques and genomic/proteomic information from known databases for defining relevant features for PPI classification. Urquiza JM; Rojas I; Pomares H; Herrera J; Florido JP; Valenzuela O; Cepero M Comput Biol Med; 2012 Jun; 42(6):639-50. PubMed ID: 22575173 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]