These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 21945356)
1. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Wang Y; Grainger DW Adv Drug Deliv Rev; 2012 Sep; 64(12):1341-57. PubMed ID: 21945356 [TBL] [Abstract][Full Text] [Related]
2. siRNA knock-down of RANK signaling to control osteoclast-mediated bone resorption. Wang Y; Grainger DW Pharm Res; 2010 Jul; 27(7):1273-84. PubMed ID: 20333451 [TBL] [Abstract][Full Text] [Related]
3. Combined strategy of siRNA and osteoclast actin cytoskeleton automated imaging to identify novel regulators of bone resorption shows a non-mitotic function for anillin. Maurin J; Morel A; Hassen-Khodja C; Vives V; Jurdic P; Machuca-Gayet I; Blangy A Eur J Cell Biol; 2018 Nov; 97(8):568-579. PubMed ID: 30424898 [TBL] [Abstract][Full Text] [Related]
4. Silencing of Ac45 Simultaneously Inhibits Osteoclast-Mediated Bone Resorption and Attenuates Dendritic Cell-Mediated Inflammation through Impairing Acidification and Cathepsin K Secretion. Yang W; Zhu Z; Li L; McVicar A; Gao N; Wang L; Li YP; Chen W Infect Immun; 2020 Dec; 89(1):. PubMed ID: 33077625 [TBL] [Abstract][Full Text] [Related]
5. Optimized transfection of diced siRNA into mature primary human osteoclasts: inhibition of cathepsin K mediated bone resorption by siRNA. Selinger CI; Day CJ; Morrison NA J Cell Biochem; 2005 Dec; 96(5):996-1002. PubMed ID: 16149069 [TBL] [Abstract][Full Text] [Related]
6. Selective local delivery of RANK siRNA to bone phagocytes using bone augmentation biomaterials. Wang Y; Tran KK; Shen H; Grainger DW Biomaterials; 2012 Nov; 33(33):8540-7. PubMed ID: 22951320 [TBL] [Abstract][Full Text] [Related]
7. MicroRNA-155 inhibition up-regulates LEPR to inhibit osteoclast activation and bone resorption via activation of AMPK in alendronate-treated osteoporotic mice. Mao Z; Zhu Y; Hao W; Chu C; Su H IUBMB Life; 2019 Dec; 71(12):1916-1928. PubMed ID: 31317664 [TBL] [Abstract][Full Text] [Related]
8. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Liu J; Dang L; Li D; Liang C; He X; Wu H; Qian A; Yang Z; Au DW; Chiang MW; Zhang BT; Han Q; Yue KK; Zhang H; Lv C; Pan X; Xu J; Bian Z; Shang P; Tan W; Liang Z; Guo B; Lu A; Zhang G Biomaterials; 2015 Jun; 52():148-60. PubMed ID: 25818421 [TBL] [Abstract][Full Text] [Related]
9. Osteoprotegerin gene-modified BMSCs with hydroxyapatite scaffold for treating critical-sized mandibular defects in ovariectomized osteoporotic rats. Liu X; Bao C; Xu HHK; Pan J; Hu J; Wang P; Luo E Acta Biomater; 2016 Sep; 42():378-388. PubMed ID: 27318268 [TBL] [Abstract][Full Text] [Related]
10. Nanovehicle-based Small Interfering RNA (siRNA) Delivery for Therapeutic Purposes: A New Molecular Approach in Pharmacogenomics. Akhtari J; Tafazoli A; Mehrad-Majd H; Mahrooz A Curr Clin Pharmacol; 2018; 13(3):173-182. PubMed ID: 29992895 [TBL] [Abstract][Full Text] [Related]
11. Delivery strategies for siRNA-mediated gene silencing. Gilmore IR; Fox SP; Hollins AJ; Akhtar S Curr Drug Deliv; 2006 Apr; 3(2):147-5. PubMed ID: 16611001 [TBL] [Abstract][Full Text] [Related]
12. Bone scaffolds loaded with siRNA-Semaphorin4d for the treatment of osteoporosis related bone defects. Zhang Y; Wei L; Miron RJ; Shi B; Bian Z Sci Rep; 2016 Jun; 6():26925. PubMed ID: 27254469 [TBL] [Abstract][Full Text] [Related]
13. Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. He S; Zhang D; Cheng F; Gong F; Guo Y Mol Biol Rep; 2009 Nov; 36(8):2153-63. PubMed ID: 19117119 [TBL] [Abstract][Full Text] [Related]
15. RNA interference for therapy in the vascular endothelium. Kaufmann J; Ahrens K; Santel A Microvasc Res; 2010 Sep; 80(2):286-93. PubMed ID: 20144624 [TBL] [Abstract][Full Text] [Related]
16. Osteoclastogenic capacity of peripheral blood mononuclear cells is not different between women with and without osteoporosis. Koek WNH; van der Eerden BCJ; Alves RDAM; van Driel M; Schreuders-Koedam M; Zillikens MC; van Leeuwen JPTM Bone; 2017 Feb; 95():108-114. PubMed ID: 27845263 [TBL] [Abstract][Full Text] [Related]
17. Current issues of RNAi therapeutics delivery and development. Haussecker D J Control Release; 2014 Dec; 195():49-54. PubMed ID: 25111131 [TBL] [Abstract][Full Text] [Related]
18. POLR2A blocks osteoclastic bone resorption and protects against osteoporosis by interacting with CREB1. Liu C; Han Y; Zhao X; Li B; Xu L; Li D; Li G J Cell Physiol; 2021 Jul; 236(7):5134-5146. PubMed ID: 33595106 [TBL] [Abstract][Full Text] [Related]
19. RNA interference (RNAi) in hematology. Scherr M; Steinmann D; Eder M Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462 [TBL] [Abstract][Full Text] [Related]
20. Neohesperidin suppresses osteoclast differentiation, bone resorption and ovariectomised-induced osteoporosis in mice. Tan Z; Cheng J; Liu Q; Zhou L; Kenny J; Wang T; Lin X; Yuan J; Quinn JMW; Tickner J; Hong G; Qin A; Zhao J; Xu J Mol Cell Endocrinol; 2017 Jan; 439():369-378. PubMed ID: 27664516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]