BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21945404)

  • 1. Bi-stability, hysteresis, and memory of voltage-gated lysenin channels.
    Fologea D; Krueger E; Mazur YI; Stith C; Okuyama Y; Henry R; Salamo GJ
    Biochim Biophys Acta; 2011 Dec; 1808(12):2933-9. PubMed ID: 21945404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for the hysteresis observed in gating of lysenin channels.
    Krueger E; Al Faouri R; Fologea D; Henry R; Straub D; Salamo G
    Biophys Chem; 2013 Dec; 184():126-30. PubMed ID: 24075493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Voltage Regulation Mechanism of the Pore-Forming Toxin Lysenin.
    Bryant SL; Clark T; Thomas CA; Ware KS; Bogard A; Calzacorta C; Prather D; Fologea D
    Toxins (Basel); 2018 Aug; 10(8):. PubMed ID: 30126104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramembrane congestion effects on lysenin channel voltage-induced gating.
    Krueger E; Bryant S; Shrestha N; Clark T; Hanna C; Pink D; Fologea D
    Eur Biophys J; 2016 Mar; 45(2):187-94. PubMed ID: 26695013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purinergic control of lysenin's transport and voltage-gating properties.
    Bryant S; Shrestha N; Carnig P; Kosydar S; Belzeski P; Hanna C; Fologea D
    Purinergic Signal; 2016 Sep; 12(3):549-59. PubMed ID: 27318938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential analytical applications of lysenin channels for detection of multivalent ions.
    Fologea D; Al Faori R; Krueger E; Mazur YI; Kern M; Williams M; Mortazavi A; Henry R; Salamo GJ
    Anal Bioanal Chem; 2011 Oct; 401(6):1871-9. PubMed ID: 21818682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled gating of lysenin pores.
    Fologea D; Krueger E; Lee R; Naglak M; Mazur Y; Henry R; Salamo G
    Biophys Chem; 2010 Jan; 146(1):25-9. PubMed ID: 19854558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic sensing of Angiotensin II with lysenin channels.
    Shrestha N; Bryant SL; Thomas C; Richtsmeier D; Pu X; Tinker J; Fologea D
    Sci Rep; 2017 May; 7(1):2448. PubMed ID: 28550293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of Voltage-Gating and Hysteresis of Lysenin Channels by Cu
    Bogard A; Finn PW; Smith AR; Flacau IM; Whiting R; Fologea D
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Effective Electric Dipole Model for Voltage-induced Gating Mechanism of Lysenin.
    Faouri RA; Krueger E; Govind Kumar V; Fologea D; Straub D; Alismail H; Alfaori Q; Kight A; Ray J; Henry R; Moradi M; Salamo G
    Sci Rep; 2019 Aug; 9(1):11440. PubMed ID: 31391571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysenin forms a voltage-dependent channel in artificial lipid bilayer membranes.
    Ide T; Aoki T; Takeuchi Y; Yanagida T
    Biochem Biophys Res Commun; 2006 Jul; 346(1):288-92. PubMed ID: 16756950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels.
    Bryant SL; Eixenberger JE; Rossland S; Apsley H; Hoffmann C; Shrestha N; McHugh M; Punnoose A; Fologea D
    J Nanobiotechnology; 2017 Dec; 15(1):90. PubMed ID: 29246155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic polymers inhibit the conductance of lysenin channels.
    Fologea D; Krueger E; Rossland S; Bryant S; Foss W; Clark T
    ScientificWorldJournal; 2013; 2013():316758. PubMed ID: 24191139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysenin Channels as Sensors for Ions and Molecules.
    Bogard A; Abatchev G; Hutchinson Z; Ward J; Finn PW; McKinney F; Fologea D
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33120957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysenin-His, a sphingomyelin-recognizing toxin, requires tryptophan 20 for cation-selective channel assembly but not for membrane binding.
    Kwiatkowska K; Hordejuk R; Szymczyk P; Kulma M; Abdel-Shakor AB; Płucienniczak A; Dołowy K; Szewczyk A; Sobota A
    Mol Membr Biol; 2007; 24(2):121-34. PubMed ID: 17453419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical theory of hysteresis in ion channels: two-state model.
    Pustovoit MA; Berezhkovskii AM; Bezrukov SM
    J Chem Phys; 2006 Nov; 125(19):194907. PubMed ID: 17129167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slo3 K+ channels: voltage and pH dependence of macroscopic currents.
    Zhang X; Zeng X; Lingle CJ
    J Gen Physiol; 2006 Sep; 128(3):317-36. PubMed ID: 16940555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of action of sphingomyelin-specific pore-forming toxin, lysenin.
    Yilmaz N; Yamaji-Hasegawa A; Hullin-Matsuda F; Kobayashi T
    Semin Cell Dev Biol; 2018 Jan; 73():188-198. PubMed ID: 28751253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the Structural Dynamics of the Lysenin During Prepore-to-Pore Transition Using Hydrogen-Deuterium Exchange Mass Spectrometry.
    Kulma M; Dadlez M; Kwiatkowska K
    Toxins (Basel); 2019 Aug; 11(8):. PubMed ID: 31394843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.