These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 21945502)

  • 21. Studies on the control of energy metabolism in mammalian cardiac muscle cells in culture.
    Seraydarian MW
    Recent Adv Stud Cardiac Struct Metab; 1975; 8():181-90. PubMed ID: 1215636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy metabolism in muscle approaching maximal rates of oxygen utilization.
    Wilson DF
    Med Sci Sports Exerc; 1995 Jan; 27(1):54-9. PubMed ID: 7898338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishment of order in the flow of genetic information in cells.
    Bandyopadhyay RS; Faller DV
    Cell Biochem Biophys; 1999; 30(1):35-70. PubMed ID: 10099822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The high energy demand of neuronal cells caused by passive leak currents is not a waste of energy.
    Berndt N; Holzhütter HG
    Cell Biochem Biophys; 2013 Nov; 67(2):527-35. PubMed ID: 23479331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energetic state is a strong regulator of sarcoplasmic reticulum Ca2+ loss in cardiac muscle: different efficiencies of different energy sources.
    Kuum M; Kaasik A; Joubert F; Ventura-Clapier R; Veksler V
    Cardiovasc Res; 2009 Jul; 83(1):89-96. PubMed ID: 19389722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondrial hydrogen peroxide production alters oxygen consumption in an oxygen-concentration-dependent manner.
    Munns SE; Lui JK; Arthur PG
    Free Radic Biol Med; 2005 Jun; 38(12):1594-603. PubMed ID: 15917188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.
    Messerli MA; Amaral-Zettler LA; Zettler E; Jung SK; Smith PJ; Sogin ML
    J Exp Biol; 2005 Jul; 208(Pt 13):2569-79. PubMed ID: 15961743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cooperative effects on the kinetics of ATP hydrolysis in collective molecular motors.
    Shu Y; Shi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021912. PubMed ID: 14995496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Cellular energy metabolism: physiologic and pathologic aspects].
    Sztark F; Payen JF; Piriou V; Rigoulet M; Ventura-Clapier R; Mazat JP; Leverve X; Janvier G
    Ann Fr Anesth Reanim; 1999 Feb; 18(2):261-9. PubMed ID: 10207603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surviving the drought: burrowing frogs save energy by increasing mitochondrial coupling.
    Kayes SM; Cramp RL; Hudson NJ; Franklin CE
    J Exp Biol; 2009 Jul; 212(Pt 14):2248-53. PubMed ID: 19561214
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Modification of energy supply by pancreatic mitochondria in acute experimental pancreatitis].
    Halangk W; Matthias R; Nedelev B; Schild L; Meyer F; Schulz HU; Lippert H
    Zentralbl Chir; 1997; 122(4):305-8. PubMed ID: 9221643
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity of oxidative metabolism in variable climates: molecular mechanisms.
    Seebacher F; Brand MD; Else PL; Guderley H; Hulbert AJ; Moyes CD
    Physiol Biochem Zool; 2010; 83(5):721-32. PubMed ID: 20586603
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions.
    Zeng AP; Deckwer WD
    Biotechnol Prog; 1995; 11(1):71-9. PubMed ID: 7765990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Metabolic regulation of ion-osmotic homeostasis in the non-electrostimulated cell].
    Aslanidi KB; Panfilov AV
    Biofizika; 1986; 31(5):814-9. PubMed ID: 2430626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model to predict the ATP equivalents of macronutrients absorbed from food.
    Coles L; Rutherfurd S; Moughan P
    Food Funct; 2013 Feb; 4(3):432-42. PubMed ID: 23233079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adenine nucleotide regulation in pancreatic beta-cells: modeling of ATP/ADP-Ca2+ interactions.
    Fridlyand LE; Ma L; Philipson LH
    Am J Physiol Endocrinol Metab; 2005 Nov; 289(5):E839-48. PubMed ID: 15985450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Balancing of energy-consuming processes of rat hepatocytes.
    Schneider W; Siems W; Grune T
    Cell Biochem Funct; 1990 Oct; 8(4):227-32. PubMed ID: 1703050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular energetics during exercise.
    Conley KE
    Adv Vet Sci Comp Med; 1994; 38A():1-39. PubMed ID: 7801830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The multifactorial role of ATP in repair processes and radioprotection.
    Szeinfeld D
    Med Hypotheses; 1990 Jul; 32(3):225-9. PubMed ID: 2204791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic control of stationary flux ratios for a wide range of biochemical processes.
    Mallory JD; Kolomeisky AB; Igoshin OA
    Proc Natl Acad Sci U S A; 2020 Apr; 117(16):8884-8889. PubMed ID: 32265281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.