These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21945520)

  • 1. Mitochondrial adenine nucleotide transport and cardioprotection.
    Das S; Steenbergen C
    J Mol Cell Cardiol; 2012 Feb; 52(2):448-53. PubMed ID: 21945520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.
    Das S; Wong R; Rajapakse N; Murphy E; Steenbergen C
    Circ Res; 2008 Oct; 103(9):983-91. PubMed ID: 18802025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming an energy crisis?: an adaptive role of glycogen synthase kinase-3 inhibition in ischemia/reperfusion.
    Zhai P; Sadoshima J
    Circ Res; 2008 Oct; 103(9):910-3. PubMed ID: 18948628
    [No Abstract]   [Full Text] [Related]  

  • 4. Mechanism for resveratrol-induced cardioprotection against reperfusion injury involves glycogen synthase kinase 3beta and mitochondrial permeability transition pore.
    Xi J; Wang H; Mueller RA; Norfleet EA; Xu Z
    Eur J Pharmacol; 2009 Feb; 604(1-3):111-6. PubMed ID: 19135050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardioprotection and altered mitochondrial adenine nucleotide transport.
    Steenbergen C; Das S; Su J; Wong R; Murphy E
    Basic Res Cardiol; 2009 Mar; 104(2):149-56. PubMed ID: 19242642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels.
    Feng Y; Madungwe NB; Imam Aliagan AD; Tombo N; Bopassa JC
    Biochem Biophys Res Commun; 2019 Dec; 520(3):606-611. PubMed ID: 31623831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection.
    Bertero E; Popoiu TA; Maack C
    Basic Res Cardiol; 2024 Aug; 119(4):569-585. PubMed ID: 38890208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mitochondrial permeability transition pore as a target for cardioprotection in hypertrophic cardiomyopathy.
    Rees PS; Davidson SM; Harding SE; McGregor C; Elliot PM; Yellon DM; Hausenloy DJ
    Cardiovasc Drugs Ther; 2013 Jun; 27(3):235-7. PubMed ID: 23380984
    [No Abstract]   [Full Text] [Related]  

  • 9. What makes the mitochondria a killer? Can we condition them to be less destructive?
    Murphy E; Steenbergen C
    Biochim Biophys Acta; 2011 Jul; 1813(7):1302-8. PubMed ID: 20837069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection.
    Bernardi P; Di Lisa F
    J Mol Cell Cardiol; 2015 Jan; 78():100-6. PubMed ID: 25268651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury.
    Morciano G; Giorgi C; Bonora M; Punzetti S; Pavasini R; Wieckowski MR; Campo G; Pinton P
    J Mol Cell Cardiol; 2015 Jan; 78():142-53. PubMed ID: 25172387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondria and GSK-3beta in cardioprotection against ischemia/reperfusion injury.
    Miura T; Tanno M
    Cardiovasc Drugs Ther; 2010 Jun; 24(3):255-63. PubMed ID: 20490903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury.
    Ong SB; Samangouei P; Kalkhoran SB; Hausenloy DJ
    J Mol Cell Cardiol; 2015 Jan; 78():23-34. PubMed ID: 25446182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of pressure overload on cardioprotection of mitochondrial KATP channels and GSK-3beta: interaction with the MPT pore.
    Mozaffari MS; Schaffer SW
    Am J Hypertens; 2008 May; 21(5):570-5. PubMed ID: 18437149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury.
    Sloan RC; Moukdar F; Frasier CR; Patel HD; Bostian PA; Lust RM; Brown DA
    J Mol Cell Cardiol; 2012 May; 52(5):1009-18. PubMed ID: 22406429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mitochondrial permeability transition pore and cyclophilin D in cardioprotection.
    Di Lisa F; Carpi A; Giorgio V; Bernardi P
    Biochim Biophys Acta; 2011 Jul; 1813(7):1316-22. PubMed ID: 21295622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear-encoded mitochondrial proteins and their role in cardioprotection.
    Boengler K; Heusch G; Schulz R
    Biochim Biophys Acta; 2011 Jul; 1813(7):1286-94. PubMed ID: 21255616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientin-induced cardioprotection against reperfusion is associated with attenuation of mitochondrial permeability transition.
    Lu N; Sun Y; Zheng X
    Planta Med; 2011 Jul; 77(10):984-91. PubMed ID: 21283956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection.
    Javadov S; Karmazyn M
    Cell Physiol Biochem; 2007; 20(1-4):1-22. PubMed ID: 17595511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion.
    Loor G; Kondapalli J; Iwase H; Chandel NS; Waypa GB; Guzy RD; Vanden Hoek TL; Schumacker PT
    Biochim Biophys Acta; 2011 Jul; 1813(7):1382-94. PubMed ID: 21185334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.