BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21945610)

  • 1. A rapid, sensitive, and selective bioluminescence resonance energy transfer (BRET)-based nucleic acid sensing system.
    Kumar M; Zhang D; Broyles D; Deo SK
    Biosens Bioelectron; 2011 Dec; 30(1):133-9. PubMed ID: 21945610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of enhanced bioluminescence energy transfer donors for protease biosensors.
    Dacres H; Michie M; Trowell SC
    Anal Biochem; 2012 May; 424(2):206-10. PubMed ID: 22387387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET).
    Dacres H; Michie M; Wang J; Pfleger KD; Trowell SC
    Biochem Biophys Res Commun; 2012 Aug; 425(3):625-9. PubMed ID: 22877756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive detection of cellular protein interactions using bioluminescence resonance energy transfer quantum dot-based nanoprobes.
    Quiñones GA; Miller SC; Bhattacharyya S; Sobek D; Stephan JP
    J Cell Biochem; 2012 Jul; 113(7):2397-405. PubMed ID: 22573556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct comparison of bioluminescence-based resonance energy transfer methods for monitoring of proteolytic cleavage.
    Dacres H; Dumancic MM; Horne I; Trowell SC
    Anal Biochem; 2009 Feb; 385(2):194-202. PubMed ID: 19026607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reassembly of a bioluminescent protein Renilla luciferase directed through DNA hybridization.
    Cissell KA; Rahimi Y; Shrestha S; Deo SK
    Bioconjug Chem; 2009 Jan; 20(1):15-9. PubMed ID: 19063714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional complementation of high-efficiency resonance energy transfer: a new tool for the study of protein binding interactions in living cells.
    Molinari P; Casella I; Costa T
    Biochem J; 2008 Jan; 409(1):251-61. PubMed ID: 17868039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules.
    Hwang E; Song J; Zhang J
    Biosensors (Basel); 2019 Mar; 9(1):. PubMed ID: 30884844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of hGluc/tdTomato pair for sensitive BRET sensing of protease with high solution media tolerance.
    Li F; Yu J; Zhang Z; Cui Z; Wang D; Wei H; Zhang XE
    Talanta; 2013 May; 109():141-6. PubMed ID: 23618151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid, single-step nucleic acid detection.
    Cissell KA; Campbell S; Deo SK
    Anal Bioanal Chem; 2008 Aug; 391(7):2577-81. PubMed ID: 18563395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of in vitro SUMOylation using bioluminescence resonance energy transfer (BRET).
    Kim YP; Jin Z; Kim E; Park S; Oh YH; Kim HS
    Biochem Biophys Res Commun; 2009 May; 382(3):530-4. PubMed ID: 19289109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Buffer enhanced bioluminescence resonance energy transfer sensor based on Gaussia luciferase for in vitro detection of protease.
    Li F; Yu J; Zhang Z; Cui Z; Wang D; Wei H; Zhang XE
    Anal Chim Acta; 2012 Apr; 724():104-10. PubMed ID: 22483217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advantages of substituting bioluminescence for fluorescence in a resonance energy transfer-based periplasmic binding protein biosensor.
    Dacres H; Michie M; Anderson A; Trowell SC
    Biosens Bioelectron; 2013 Mar; 41():459-64. PubMed ID: 23083905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General Bioluminescence Resonance Energy Transfer Homogeneous Immunoassay for Small Molecules Based on Quantum Dots.
    Yu X; Wen K; Wang Z; Zhang X; Li C; Zhang S; Shen J
    Anal Chem; 2016 Apr; 88(7):3512-20. PubMed ID: 26948147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct comparison of fluorescence- and bioluminescence-based resonance energy transfer methods for real-time monitoring of thrombin-catalysed proteolytic cleavage.
    Dacres H; Dumancic MM; Horne I; Trowell SC
    Biosens Bioelectron; 2009 Jan; 24(5):1164-70. PubMed ID: 18723336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dot-nucleic acid/aptamer bioconjugate-based fluorimetric biosensors.
    Zhou D
    Biochem Soc Trans; 2012 Aug; 40(4):635-9. PubMed ID: 22817707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A red-shifted Bioluminescence Resonance Energy Transfer (BRET) biosensing system for rapid measurement of plasmin activity in human plasma.
    Weihs F; Peh A; Dacres H
    Anal Chim Acta; 2020 Mar; 1102():99-108. PubMed ID: 32044001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the activation state of the insulin-like growth factor-1 receptor and its interaction with protein tyrosine phosphatase 1B using bioluminescence resonance energy transfer.
    Blanquart C; Boute N; Lacasa D; Issad T
    Mol Pharmacol; 2005 Sep; 68(3):885-94. PubMed ID: 15976035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A universal nucleic acid sequence biosensor with nanomolar detection limits.
    Baeumner AJ; Pretz J; Fang S
    Anal Chem; 2004 Feb; 76(4):888-94. PubMed ID: 14961717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-sensitivity quantum dot-based fluorescence resonance energy transfer bioanalysis by capillary electrophoresis.
    Li YQ; Wang JH; Zhang HL; Yang J; Guan LY; Chen H; Luo QM; Zhao YD
    Biosens Bioelectron; 2010 Feb; 25(6):1283-9. PubMed ID: 19914053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.