BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 21945826)

  • 1. Biphasic, triphasic and multiphasic calcium orthophosphates.
    Dorozhkin SV
    Acta Biomater; 2012 Mar; 8(3):963-77. PubMed ID: 21945826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioceramics of calcium orthophosphates.
    Dorozhkin SV
    Biomaterials; 2010 Mar; 31(7):1465-85. PubMed ID: 19969343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative in vitro study of calcium phosphate ceramics for their potency as scaffolds for tissue engineering.
    Wójtowicz J; Leszczyńska J; Chróścicka A; Slósarczyk A; Paszkiewicz Z; Zima A; Rożniatowski K; Jeleń P; Lewandowska-Szumieł M
    Biomed Mater Eng; 2014; 24(3):1609-23. PubMed ID: 24840199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional dependence of hematopoietic stem cells expansion on bioceramic composite scaffolds for bone tissue engineering.
    Mishra S; Rajyalakshmi A; Balasubramanian K
    J Biomed Mater Res A; 2012 Sep; 100(9):2483-91. PubMed ID: 22615189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocomposites and hybrid biomaterials based on calcium orthophosphates.
    Dorozhkin SV
    Biomatter; 2011; 1(1):3-56. PubMed ID: 23507726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosized and nanocrystalline calcium orthophosphates.
    Dorozhkin SV
    Acta Biomater; 2010 Mar; 6(3):715-34. PubMed ID: 19861183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds.
    Detsch R; Schaefer S; Deisinger U; Ziegler G; Seitz H; Leukers B
    J Biomater Appl; 2011 Sep; 26(3):359-80. PubMed ID: 20659962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering of bone: search for a better scaffold.
    Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R
    Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectopic osteogenic ability of calcium phosphate scaffolds cultured with osteoblasts.
    Nan K; Sun S; Li Y; Chen H; Wu T; Lu F
    J Biomed Mater Res A; 2010 May; 93(2):464-8. PubMed ID: 19582839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research development and prospect of calcium phosphate biomaterials with intrinsic osteoinductivity].
    Bao C; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):442-5, 454. PubMed ID: 16706385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium Orthophosphate-Based Bioceramics.
    Dorozhkin SV
    Materials (Basel); 2013 Sep; 6(9):3840-3942. PubMed ID: 28788309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adipogenesis on biphasic calcium phosphate using rat adipose-derived mesenchymal stem cells: in vitro and in vivo.
    Venugopal B; Fernandez FB; Babu SS; Harikrishnan VS; Varma H; John A
    J Biomed Mater Res A; 2012 Jun; 100(6):1427-37. PubMed ID: 22374846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering.
    Habraken WJ; Wolke JG; Jansen JA
    Adv Drug Deliv Rev; 2007 May; 59(4-5):234-48. PubMed ID: 17478007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of strontium on the synthesis and surface properties of biphasic calcium phosphate (BCP) bioceramics.
    Kanchana P; Sekar C
    J Appl Biomater Biomech; 2010; 8(3):153-8. PubMed ID: 21337306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic/organic biocomposite cryogels for regeneration of bony tissues.
    Mishra R; Kumar A
    J Biomater Sci Polym Ed; 2011; 22(16):2107-26. PubMed ID: 21067655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo.
    Feng B; Jinkang Z; Zhen W; Jianxi L; Jiang C; Jian L; Guolin M; Xin D
    Biomed Mater; 2011 Feb; 6(1):015007. PubMed ID: 21206002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.