BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21945910)

  • 1. A two pulse drug delivery system for amoxicillin: an attempt to counter the scourge of bacterial resistance against antibiotics.
    Akhter H; Saigal N; Baboota S; Faisal S; Ali J
    Acta Pharm; 2011 Sep; 61(3):313-22. PubMed ID: 21945910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Felodipine β-cyclodextrin complex as an active core for time delayed chronotherapeutic treatment of hypertension.
    Pagar KP; Vavia PR
    Acta Pharm; 2012 Nov; 62(3):395-410. PubMed ID: 23470351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of core size and excipients on the lag time and drug release from a pulsatile drug delivery system.
    Efentakis M; Iliopoyloy A; Siamidi A
    Drug Dev Ind Pharm; 2011 Jan; 37(1):113-20. PubMed ID: 20615155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Release characteristics and in vitro-in vivo correlation of pulsatile pattern for a pulsatile drug delivery system activated by membrane rupture via osmotic pressure and swelling.
    Lin HL; Lin SY; Lin YK; Ho HO; Lo YW; Sheu MT
    Eur J Pharm Biopharm; 2008 Sep; 70(1):289-301. PubMed ID: 18539015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained release of amoxicillin from ethyl cellulose-coated amoxicillin/chitosan-cyclodextrin-based tablets.
    Songsurang K; Pakdeebumrung J; Praphairaksit N; Muangsin N
    AAPS PharmSciTech; 2011 Mar; 12(1):35-45. PubMed ID: 21161458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release.
    Efentakis M; Koligliati S; Vlachou M
    Int J Pharm; 2006 Mar; 311(1-2):147-56. PubMed ID: 16436321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified release from hydroxypropyl methylcellulose compression-coated tablets.
    Rujivipat S; Bodmeier R
    Int J Pharm; 2010 Dec; 402(1-2):72-7. PubMed ID: 20883759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic excipients modulate the time lag of time-controlled disintegrating press-coated tablets.
    Lin SY; Li MJ; Lin KH
    AAPS PharmSciTech; 2004 Aug; 5(4):e54. PubMed ID: 15760051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct compression of cushion-layered ethyl cellulose-coated extended release pellets into rapidly disintegrating tablets without changes in the release profile.
    Hosseini A; Körber M; Bodmeier R
    Int J Pharm; 2013 Dec; 457(2):503-9. PubMed ID: 23892153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring of drug delivery of 5-fluorouracil to the colon via a mixed film coated unit system.
    Kumar RV; Sinha VR
    Acta Pharm; 2011 Sep; 61(3):343-51. PubMed ID: 21945913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and in-vitro evaluation of a colon-specific controlled release drug delivery system.
    Talukder RM; Fassihi R
    J Pharm Pharmacol; 2008 Oct; 60(10):1297-303. PubMed ID: 18812022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compression forces and amount of outer coating layer affecting the time-controlled disintegration of the compression-coated tablets prepared by direct compression with micronized ethylcellulose.
    Lin KH; Lin SY; Li MJ
    J Pharm Sci; 2001 Dec; 90(12):2005-9. PubMed ID: 11745759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo drug release from hydrophilic dextran tablets capable of forming polyion complex.
    Miyazaki Y; Tanaka Y; Yakou S; Takayama K
    J Control Release; 2006 Aug; 114(1):47-52. PubMed ID: 16824636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved drug delivery to the lower intestinal tract with tablets compression-coated with enteric/nonenteric polymer powder blends.
    Rujivipat S; Bodmeier R
    Eur J Pharm Biopharm; 2010 Nov; 76(3):486-92. PubMed ID: 20868750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Ceolus™ microcrystalline cellulose grades for the direct compression of enteric-coated pellets.
    Kucera SU; DiNunzio JC; Kaneko N; McGinity JW
    Drug Dev Ind Pharm; 2012 Mar; 38(3):341-50. PubMed ID: 21870908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrudable core system: development of a single-layer osmotic controlled-release tablet.
    Waterman KC; MacDonald BC; Roy MC
    J Control Release; 2009 Mar; 134(3):201-6. PubMed ID: 19100796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Three-Pulse Release Tablet for Amoxicillin: Preparation, Pharmacokinetic Study and Physiologically Based Pharmacokinetic Modeling.
    Li J; Chai H; Li Y; Chai X; Zhao Y; Zhao Y; Tao T; Xiang X
    PLoS One; 2016; 11(8):e0160260. PubMed ID: 27479702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compression-Coated Tablet for Colon Targeting: Impact of Coating and Core Materials on Drug Release.
    Maity S; Sa B
    AAPS PharmSciTech; 2016 Apr; 17(2):504-15. PubMed ID: 26271189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of a pulsatile release drug delivery system using different swellable/rupturable materials.
    El-Maradny HA
    Drug Deliv; 2007 Nov; 14(8):539-46. PubMed ID: 18027184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.