These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 21946184)

  • 1. Modulation of microRNAs during exercise and disease in human skeletal muscle.
    Timmons JA
    Exerc Sport Sci Rev; 2011 Oct; 39(4):218; author reply 219. PubMed ID: 21946184
    [No Abstract]   [Full Text] [Related]  

  • 2. The MyomiR network in skeletal muscle plasticity.
    McCarthy JJ
    Exerc Sport Sci Rev; 2011 Jul; 39(3):150-4. PubMed ID: 21467943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of microRNAs in skeletal muscle health and disease.
    Kirby TJ; Chaillou T; McCarthy JJ
    Front Biosci (Landmark Ed); 2015 Jan; 20(1):37-77. PubMed ID: 25553440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training.
    Keller P; Vollaard N; Babraj J; Ball D; Sewell DA; Timmons JA
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1306-9. PubMed ID: 17956337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Skeletal Muscle by microRNAs.
    Diniz GP; Wang DZ
    Compr Physiol; 2016 Jun; 6(3):1279-94. PubMed ID: 27347893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle.
    Zacharewicz E; Della Gatta P; Reynolds J; Garnham A; Crowley T; Russell AP; Lamon S
    PLoS One; 2014; 9(12):e114009. PubMed ID: 25460913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.
    Brown WM
    Br J Sports Med; 2015 Dec; 49(24):1567-78. PubMed ID: 25824446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene networks in skeletal muscle following endurance exercise are coexpressed in blood neutrophils and linked with blood inflammation markers.
    Broadbent J; Sampson D; Sabapathy S; Haseler LJ; Wagner KH; Bulmer AC; Peake JM; Neubauer O
    J Appl Physiol (1985); 2017 Apr; 122(4):752-766. PubMed ID: 28104750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MicroRNAs: playing a big role in explaining skeletal muscle adaptation?
    Roth SM
    J Appl Physiol (1985); 2011 Feb; 110(2):301-2. PubMed ID: 21088214
    [No Abstract]   [Full Text] [Related]  

  • 10. Micro(RNA)-cloud can perpetuate physiological adaptation of skeletal muscle to exercise and energy imbalance.
    Kolodziej F; McLysaght A; Goljanek-Whysall K
    J Physiol; 2022 Sep; 600(17):3899-3900. PubMed ID: 35932283
    [No Abstract]   [Full Text] [Related]  

  • 11. Role of microRNAs in the age-related changes in skeletal muscle and diet or exercise interventions to promote healthy aging in humans.
    McGregor RA; Poppitt SD; Cameron-Smith D
    Ageing Res Rev; 2014 Sep; 17():25-33. PubMed ID: 24833328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of human skeletal muscle to exercise-training.
    Simoneau JA
    Int J Obes Relat Metab Disord; 1995 Oct; 19 Suppl 4():S9-13. PubMed ID: 8581103
    [No Abstract]   [Full Text] [Related]  

  • 13. Exercise, Skeletal Muscle and Circulating microRNAs.
    Russell AP; Lamon S
    Prog Mol Biol Transl Sci; 2015; 135():471-96. PubMed ID: 26477927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle adaptation to exercise: a century of progress.
    Hamilton MT; Booth FW
    J Appl Physiol (1985); 2000 Jan; 88(1):327-31. PubMed ID: 10642397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks.
    Beiter T; Hoene M; Prenzler F; Mooren FC; Steinacker JM; Weigert C; Nieß AM; Munz B
    Exerc Immunol Rev; 2015; 21():42-57. PubMed ID: 25826388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of microRNAs in muscle development.
    Sokol NS
    Curr Top Dev Biol; 2012; 99():59-78. PubMed ID: 22365735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondria: a major player in exercise, health and disease.
    Russell AP; Foletta VC; Snow RJ; Wadley GD
    Biochim Biophys Acta; 2014 Apr; 1840(4):1276-84. PubMed ID: 24291686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle adaptation and cell cycle regulation.
    Yan Z
    Exerc Sport Sci Rev; 2000 Jan; 28(1):24-6. PubMed ID: 11131685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. microRNAs: Modulators of the underlying pathophysiology of sarcopenia?
    Brown DM; Goljanek-Whysall K
    Ageing Res Rev; 2015 Nov; 24(Pt B):263-73. PubMed ID: 26342566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of human skeletal muscle to training and anabolic steroids.
    Kadi F
    Acta Physiol Scand Suppl; 2000 Jan; 646():1-52. PubMed ID: 10717767
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.