These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21946184)

  • 21. Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells.
    Sjögren RJ; Egan B; Katayama M; Zierath JR; Krook A
    Physiol Genomics; 2015 Mar; 47(3):45-57. PubMed ID: 25547110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nutritional modulation of training-induced skeletal muscle adaptations.
    Hawley JA; Burke LM; Phillips SM; Spriet LL
    J Appl Physiol (1985); 2011 Mar; 110(3):834-45. PubMed ID: 21030665
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MiR-206, a key modulator of skeletal muscle development and disease.
    Ma G; Wang Y; Li Y; Cui L; Zhao Y; Zhao B; Li K
    Int J Biol Sci; 2015; 11(3):345-52. PubMed ID: 25678853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Analysis of Musculoskeletal Systems and Their Diseases. Gene regulatory network in development and maintenance of skeletal muscle cells].
    Sato T; Takeda S
    Clin Calcium; 2015 Aug; 25(8):1141-6. PubMed ID: 26224670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The regulation of gene expression in hypertrophying skeletal muscle.
    Carson JA
    Exerc Sport Sci Rev; 1997; 25():301-20. PubMed ID: 9213096
    [No Abstract]   [Full Text] [Related]  

  • 26. The molecular bases of training adaptation.
    Coffey VG; Hawley JA
    Sports Med; 2007; 37(9):737-63. PubMed ID: 17722947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
    Philp A; Hargreaves M; Baar K
    Am J Physiol Endocrinol Metab; 2012 Jun; 302(11):E1343-51. PubMed ID: 22395109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training.
    Seene T; Kaasik P; Umnova M
    J Sports Med Phys Fitness; 2009 Dec; 49(4):410-23. PubMed ID: 20087301
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle-specific microRNAs in skeletal muscle development.
    Horak M; Novak J; Bienertova-Vasku J
    Dev Biol; 2016 Feb; 410(1):1-13. PubMed ID: 26708096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ACE2 deficiency on physical performance and physiological adaptations of cardiac and skeletal muscle to exercise.
    Motta-Santos D; Dos Santos RA; Oliveira M; Qadri F; Poglitsch M; Mosienko V; Kappes Becker L; Campagnole-Santos MJ; M Penninger J; Alenina N; Bader M
    Hypertens Res; 2016 Jul; 39(7):506-12. PubMed ID: 27053009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of skeletal muscle proteolysis and the regulatory response to nutrition and exercise.
    Pasiakos SM; Carbone JW
    IUBMB Life; 2014 Jul; 66(7):478-84. PubMed ID: 25052691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. microManaging glucose and lipid metabolism in skeletal muscle: Role of microRNAs.
    Massart J; Katayama M; Krook A
    Biochim Biophys Acta; 2016 Dec; 1861(12 Pt B):2130-2138. PubMed ID: 27183241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation and phylogeny of skeletal muscle regeneration.
    Baghdadi MB; Tajbakhsh S
    Dev Biol; 2018 Jan; 433(2):200-209. PubMed ID: 28811217
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle.
    Marzetti E; Lawler JM; Hiona A; Manini T; Seo AY; Leeuwenburgh C
    Free Radic Biol Med; 2008 Jan; 44(2):160-8. PubMed ID: 18191752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training.
    Ogasawara R; Akimoto T; Umeno T; Sawada S; Hamaoka T; Fujita S
    Physiol Genomics; 2016 Apr; 48(4):320-4. PubMed ID: 26850043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histone modifications and exercise adaptations.
    McGee SL; Hargreaves M
    J Appl Physiol (1985); 2011 Jan; 110(1):258-63. PubMed ID: 21030677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Adaptive characteristics of skiers with different types of energy supply of skeletal muscles to graded exercise and athletic ].
    Bogatov AA
    Fiziol Cheloveka; 2003; 29(4):84-90. PubMed ID: 13677203
    [No Abstract]   [Full Text] [Related]  

  • 38. Molecular networks in skeletal muscle plasticity.
    Hoppeler H
    J Exp Biol; 2016 Jan; 219(Pt 2):205-13. PubMed ID: 26792332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Relationship Between Activity Pattern and Muscle Adaptation in Skeletal Muscle.
    Jarvis JC
    Artif Organs; 2015 Oct; 39(10):863-7. PubMed ID: 26471137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms and Mediators of the Skeletal Muscle Repeated Bout Effect.
    Hyldahl RD; Chen TC; Nosaka K
    Exerc Sport Sci Rev; 2017 Jan; 45(1):24-33. PubMed ID: 27782911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.