BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21946215)

  • 1. Molecular properties of TAR DNA binding protein-43 fragments are dependent upon its cleavage site.
    Furukawa Y; Kaneko K; Nukina N
    Biochim Biophys Acta; 2011 Dec; 1812(12):1577-83. PubMed ID: 21946215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conserved acidic amino acid residues in a second RNA recognition motif regulate assembly and function of TDP-43.
    Shodai A; Ido A; Fujiwara N; Ayaki T; Morimura T; Oono M; Uchida T; Takahashi R; Ito H; Urushitani M
    PLoS One; 2012; 7(12):e52776. PubMed ID: 23300771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNP2 of RNA recognition motif 1 plays a central role in the aberrant modification of TDP-43.
    Takagi S; Iguchi Y; Katsuno M; Ishigaki S; Ikenaka K; Fujioka Y; Honda D; Niwa J; Tanaka F; Watanabe H; Adachi H; Sobue G
    PLoS One; 2013; 8(6):e66966. PubMed ID: 23840565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A "two-hit" hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport.
    Pesiridis GS; Tripathy K; Tanik S; Trojanowski JQ; Lee VM
    J Biol Chem; 2011 May; 286(21):18845-55. PubMed ID: 21454607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin.
    Dormann D; Capell A; Carlson AM; Shankaran SS; Rodde R; Neumann M; Kremmer E; Matsuwaki T; Yamanouchi K; Nishihara M; Haass C
    J Neurochem; 2009 Aug; 110(3):1082-94. PubMed ID: 19522733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing.
    Che MX; Jiang YJ; Xie YY; Jiang LL; Hu HY
    FASEB J; 2011 Jul; 25(7):2344-53. PubMed ID: 21450909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of the RNA recognition motif (RRM) domains of the amyotrophic lateral sclerosis (ALS)-linked protein TDP-43 reveals an intermediate state.
    Mackness BC; Tran MT; McClain SP; Matthews CR; Zitzewitz JA
    J Biol Chem; 2014 Mar; 289(12):8264-76. PubMed ID: 24497641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43.
    Nonaka T; Kametani F; Arai T; Akiyama H; Hasegawa M
    Hum Mol Genet; 2009 Sep; 18(18):3353-64. PubMed ID: 19515851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity.
    Zhang YJ; Xu YF; Cook C; Gendron TF; Roettges P; Link CD; Lin WL; Tong J; Castanedes-Casey M; Ash P; Gass J; Rangachari V; Buratti E; Baralle F; Golde TE; Dickson DW; Petrucelli L
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7607-12. PubMed ID: 19383787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALS-causing cleavages of TDP-43 abolish its RRM2 structure and unlock CTD for enhanced aggregation and toxicity.
    Wei Y; Lim L; Wang L; Song J
    Biochem Biophys Res Commun; 2017 Apr; 485(4):826-831. PubMed ID: 28257838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Point mutations in the N-terminal domain of transactive response DNA-binding protein 43 kDa (TDP-43) compromise its stability, dimerization, and functions.
    Mompeán M; Romano V; Pantoja-Uceda D; Stuani C; Baralle FE; Buratti E; Laurents DV
    J Biol Chem; 2017 Jul; 292(28):11992-12006. PubMed ID: 28566288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of thermal unfolding simulations of RNA recognition motifs (RRMs) of TAR DNA-binding protein 43 (TDP-43).
    Prakash A; Kumar V; Meena NK; Hassan MI; Lynn AM
    J Biomol Struct Dyn; 2019 Jan; 37(1):178-194. PubMed ID: 29279008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cleavage pattern of TDP-43 determines its rate of clearance and cytotoxicity.
    Li Q; Yokoshi M; Okada H; Kawahara Y
    Nat Commun; 2015 Jan; 6():6183. PubMed ID: 25630387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43.
    Nishimoto Y; Ito D; Yagi T; Nihei Y; Tsunoda Y; Suzuki N
    J Biol Chem; 2010 Jan; 285(1):608-19. PubMed ID: 19887443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of casein kinase-1 phosphorylation sites on TDP-43.
    Kametani F; Nonaka T; Suzuki T; Arai T; Dohmae N; Akiyama H; Hasegawa M
    Biochem Biophys Res Commun; 2009 May; 382(2):405-9. PubMed ID: 19285963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TDP-35 sequesters TDP-43 into cytoplasmic inclusions through binding with RNA.
    Che MX; Jiang LL; Li HY; Jiang YJ; Hu HY
    FEBS Lett; 2015 Jul; 589(15):1920-8. PubMed ID: 26099433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delineation of the core aggregation sequences of TDP-43 C-terminal fragment.
    Saini A; Chauhan VS
    Chembiochem; 2011 Nov; 12(16):2495-501. PubMed ID: 21905193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The truncated C-terminal RNA recognition motif of TDP-43 protein plays a key role in forming proteinaceous aggregates.
    Wang YT; Kuo PH; Chiang CH; Liang JR; Chen YR; Wang S; Shen JC; Yuan HS
    J Biol Chem; 2013 Mar; 288(13):9049-57. PubMed ID: 23372158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn
    Preethi S; Bharathi V; Patel BK
    Int J Biol Macromol; 2021 Apr; 176():186-200. PubMed ID: 33577819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43).
    Hans F; Eckert M; von Zweydorf F; Gloeckner CJ; Kahle PJ
    J Biol Chem; 2018 Oct; 293(41):16083-16099. PubMed ID: 30120199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.