These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 21946768)
21. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Wu Y; Liu L; Zhan S; Wang F; Zhou P Analyst; 2012 Sep; 137(18):4171-8. PubMed ID: 22842645 [TBL] [Abstract][Full Text] [Related]
22. A colorimetric probe based on desensitized ionene-stabilized gold nanoparticles for single-step test for sulfate ions. Arkhipova VV; Apyari VV; Dmitrienko SG Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():335-41. PubMed ID: 25574653 [TBL] [Abstract][Full Text] [Related]
23. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Li Y; Wu P; Xu H; Zhang H; Zhong X Analyst; 2011 Jan; 136(1):196-200. PubMed ID: 20931106 [TBL] [Abstract][Full Text] [Related]
24. Designing bifunctionalized gold nanoparticle for colorimetric detection of Pb2+ under physiological condition. Zhu D; Li X; Liu X; Wang J; Wang Z Biosens Bioelectron; 2012 Jan; 31(1):505-9. PubMed ID: 22138466 [TBL] [Abstract][Full Text] [Related]
25. A simple "clickable" biosensor for colorimetric detection of copper(II) ions based on unmodified gold nanoparticles. Shen Q; Li W; Tang S; Hu Y; Nie Z; Huang Y; Yao S Biosens Bioelectron; 2013 Mar; 41():663-8. PubMed ID: 23089325 [TBL] [Abstract][Full Text] [Related]
26. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771 [TBL] [Abstract][Full Text] [Related]
27. Direct colorimetric diagnosis of pathogen infections by utilizing thiol-labeled PCR primers and unmodified gold nanoparticles. Jung YL; Jung C; Parab H; Li T; Park HG Biosens Bioelectron; 2010 Apr; 25(8):1941-6. PubMed ID: 20138499 [TBL] [Abstract][Full Text] [Related]
28. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Yang C; Wang Y; Marty JL; Yang X Biosens Bioelectron; 2011 Jan; 26(5):2724-7. PubMed ID: 20970980 [TBL] [Abstract][Full Text] [Related]
29. Label-free colorimetric and quantitative detection of cancer marker protein using noncrosslinking aggregation of Au/Ag nanoparticles induced by target-specific peptide probe. Wang X; Wu L; Ren J; Miyoshi D; Sugimoto N; Qu X Biosens Bioelectron; 2011 Aug; 26(12):4804-9. PubMed ID: 21733670 [TBL] [Abstract][Full Text] [Related]
30. Sensitivity enhancement in the colorimetric detection of lead(II) ion using gallic acid-capped gold nanoparticles: improving size distribution and minimizing interparticle repulsion. Huang KW; Yu CJ; Tseng WL Biosens Bioelectron; 2010 Jan; 25(5):984-9. PubMed ID: 19782557 [TBL] [Abstract][Full Text] [Related]
31. A Rapid Colorimetric Sensor of Clenbuterol Based on Cysteamine-Modified Gold Nanoparticles. Kang J; Zhang Y; Li X; Miao L; Wu A ACS Appl Mater Interfaces; 2016 Jan; 8(1):1-5. PubMed ID: 26673452 [TBL] [Abstract][Full Text] [Related]
32. N-1-(2-mercaptoethyl)thymine modification of gold nanoparticles: a highly selective and sensitive colorimetric chemosensor for Hg2+. Chen L; Lou T; Yu C; Kang Q; Chen L Analyst; 2011 Nov; 136(22):4770-3. PubMed ID: 21952711 [TBL] [Abstract][Full Text] [Related]
33. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution. Wang H; Wang Y; Jin J; Yang R Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976 [TBL] [Abstract][Full Text] [Related]
34. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes. Qi Y; Li L; Li B Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):127-31. PubMed ID: 19523870 [TBL] [Abstract][Full Text] [Related]
35. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Liu P; Han L; Wang F; Petrenko VA; Liu A Biosens Bioelectron; 2016 Aug; 82():195-203. PubMed ID: 27085951 [TBL] [Abstract][Full Text] [Related]
36. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Zhao W; Lam JC; Chiuman W; Brook MA; Li Y Small; 2008 Jun; 4(6):810-6. PubMed ID: 18537135 [TBL] [Abstract][Full Text] [Related]
37. Selective colorimetric sensing of geometrical isomers of dicarboxylates in water by using functionalized gold nanoparticles. Chatterjee A; Oh DJ; Kim KM; Youk KS; Ahn KH Chem Asian J; 2008 Nov; 3(11):1962-7. PubMed ID: 18720528 [TBL] [Abstract][Full Text] [Related]
38. Colorimetric assay of matrix metalloproteinase activity based on metal-induced self-assembly of carboxy gold nanoparticles. Kim GB; Kim KH; Park YH; Ko S; Kim YP Biosens Bioelectron; 2013 Mar; 41():833-9. PubMed ID: 23127765 [TBL] [Abstract][Full Text] [Related]
39. Design of gold nanoparticle-based colorimetric biosensing assays. Zhao W; Brook MA; Li Y Chembiochem; 2008 Oct; 9(15):2363-71. PubMed ID: 18821551 [TBL] [Abstract][Full Text] [Related]
40. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Sun J; Guo L; Bao Y; Xie J Biosens Bioelectron; 2011 Oct; 28(1):152-7. PubMed ID: 21803563 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]