These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 21946849)

  • 1. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth.
    Goodman CA; Frey JW; Mabrey DM; Jacobs BL; Lincoln HC; You JS; Hornberger TA
    J Physiol; 2011 Nov; 589(Pt 22):5485-501. PubMed ID: 21946849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy.
    Goodman CA; Miu MH; Frey JW; Mabrey DM; Lincoln HC; Ge Y; Chen J; Hornberger TA
    Mol Biol Cell; 2010 Sep; 21(18):3258-68. PubMed ID: 20668162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms.
    Ge Y; Wu AL; Warnes C; Liu J; Zhang C; Kawasome H; Terada N; Boppart MD; Schoenherr CJ; Chen J
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1434-44. PubMed ID: 19794149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of diacylglycerol kinase ΞΆ and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy.
    You JS; Lincoln HC; Kim CR; Frey JW; Goodman CA; Zhong XP; Hornberger TA
    J Biol Chem; 2014 Jan; 289(3):1551-63. PubMed ID: 24302719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism.
    Hornberger TA; Stuppard R; Conley KE; Fedele MJ; Fiorotto ML; Chin ER; Esser KA
    Biochem J; 2004 Jun; 380(Pt 3):795-804. PubMed ID: 15030312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy.
    Spangenburg EE; Le Roith D; Ward CW; Bodine SC
    J Physiol; 2008 Jan; 586(1):283-91. PubMed ID: 17974583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The type 1 insulin-like growth factor receptor (IGF-IR) pathway is mandatory for the follistatin-induced skeletal muscle hypertrophy.
    Kalista S; Schakman O; Gilson H; Lause P; Demeulder B; Bertrand L; Pende M; Thissen JP
    Endocrinology; 2012 Jan; 153(1):241-53. PubMed ID: 22087027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function.
    Steinert ND; Potts GK; Wilson GM; Klamen AM; Lin KH; Hermanson JB; McNally RM; Coon JJ; Hornberger TA
    Cell Rep; 2021 Mar; 34(9):108796. PubMed ID: 33657380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible deletion of raptor and mTOR from adult skeletal muscle impairs muscle contractility and relaxation.
    Baraldo M; Zorzato S; Dondjang AHT; Geremia A; Nogara L; Dumitras AG; Canato M; Marcucci L; Nolte H; Blaauw B
    J Physiol; 2022 Dec; 600(23):5055-5075. PubMed ID: 36255030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy.
    You JS; McNally RM; Jacobs BL; Privett RE; Gundermann DM; Lin KH; Steinert ND; Goodman CA; Hornberger TA
    FASEB J; 2019 Mar; 33(3):4021-4034. PubMed ID: 30509128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy.
    Marabita M; Baraldo M; Solagna F; Ceelen JJM; Sartori R; Nolte H; Nemazanyy I; Pyronnet S; Kruger M; Pende M; Blaauw B
    Cell Rep; 2016 Oct; 17(2):501-513. PubMed ID: 27705797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mechanistic/mammalian target of rapamycin complex 1 on mitochondrial dynamics during skeletal muscle hypertrophy.
    Uemichi K; Shirai T; Hanakita H; Takemasa T
    Physiol Rep; 2021 Mar; 9(5):e14789. PubMed ID: 33660929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.
    Umeki D; Ohnuki Y; Mototani Y; Shiozawa K; Fujita T; Nakamura Y; Saeki Y; Okumura S
    J Pharmacol Sci; 2013; 122(4):278-88. PubMed ID: 23902989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle.
    Hornberger TA; Chu WK; Mak YW; Hsiung JW; Huang SA; Chien S
    Proc Natl Acad Sci U S A; 2006 Mar; 103(12):4741-6. PubMed ID: 16537399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Ser2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load.
    Reynolds TH; Bodine SC; Lawrence JC
    J Biol Chem; 2002 May; 277(20):17657-62. PubMed ID: 11884412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mTOR function in skeletal muscle hypertrophy: increased ribosomal RNA via cell cycle regulators.
    Nader GA; McLoughlin TJ; Esser KA
    Am J Physiol Cell Physiol; 2005 Dec; 289(6):C1457-65. PubMed ID: 16079186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions.
    O'Neil TK; Duffy LR; Frey JW; Hornberger TA
    J Physiol; 2009 Jul; 587(Pt 14):3691-701. PubMed ID: 19470781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise.
    Ogasawara R; Fujita S; Hornberger TA; Kitaoka Y; Makanae Y; Nakazato K; Naokata I
    Sci Rep; 2016 Aug; 6():31142. PubMed ID: 27502839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification.
    Pallafacchina G; Calabria E; Serrano AL; Kalhovde JM; Schiaffino S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9213-8. PubMed ID: 12084817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism.
    Erbay E; Chen J
    J Biol Chem; 2001 Sep; 276(39):36079-82. PubMed ID: 11500483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.