These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 21947901)
1. On the potential energy landscape of supercooled liquids and glasses. Rodney D; Schrøder T Eur Phys J E Soft Matter; 2011 Sep; 34(9):100. PubMed ID: 21947901 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of lennard-jones clusters: A characterization of the activation-relaxation technique. Malek R; Mousseau N Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt A):7723-8. PubMed ID: 11138044 [TBL] [Abstract][Full Text] [Related]
3. Glass formation and thermodynamics of supercooled monatomic liquids. Hoang VV; Odagaki T J Phys Chem B; 2011 Jun; 115(21):6946-56. PubMed ID: 21553835 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of inherent structure in supercooled liquids near kinetic glass transition. Liao CY; Chen SH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031202. PubMed ID: 11580322 [TBL] [Abstract][Full Text] [Related]
5. Glass transitions in one-, two-, three-, and four-dimensional binary Lennard-Jones systems. Brüning R; St-Onge DA; Patterson S; Kob W J Phys Condens Matter; 2009 Jan; 21(3):035117. PubMed ID: 21817275 [TBL] [Abstract][Full Text] [Related]
6. Pressure dependence of diffusion in simple glasses and supercooled liquids. Schober HR Phys Rev Lett; 2002 Apr; 88(14):145901. PubMed ID: 11955161 [TBL] [Abstract][Full Text] [Related]
7. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: geodesic pathways through the potential energy landscape. Wang C; Stratt RM J Chem Phys; 2007 Dec; 127(22):224504. PubMed ID: 18081403 [TBL] [Abstract][Full Text] [Related]
8. Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid. Vogel M; Doliwa B; Heuer A; Glotzer SC J Chem Phys; 2004 Mar; 120(9):4404-14. PubMed ID: 15268609 [TBL] [Abstract][Full Text] [Related]
9. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids. Fraggedakis D; Hasyim MR; Mandadapu KK Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846 [TBL] [Abstract][Full Text] [Related]
10. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior. Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954 [TBL] [Abstract][Full Text] [Related]
11. MD simulations of charged binary mixtures reveal a generic relation between high- and low-temperature behavior. Hecht L; Horstmann R; Liebchen B; Vogel M J Chem Phys; 2021 Jan; 154(2):024501. PubMed ID: 33445919 [TBL] [Abstract][Full Text] [Related]
12. Control of thermodynamic liquid-liquid phase transition in a fragility-tunable glassy model. Qin HR; Lee CS; Lü YJ Phys Rev E; 2023 Nov; 108(5-2):055301. PubMed ID: 38115451 [TBL] [Abstract][Full Text] [Related]
13. Anomalous Transformation of Vapor-Deposited Highly Stable Glasses of Toluene into Mixed Glassy States by Annealing Above Tg. Sepúlveda A; Leon-Gutierrez E; Gonzalez-Silveira M; Clavaguera-Mora MT; Rodríguez-Viejo J J Phys Chem Lett; 2012 Apr; 3(7):919-23. PubMed ID: 26286421 [TBL] [Abstract][Full Text] [Related]
14. Computing the viscosity of supercooled liquids. Kushima A; Lin X; Li J; Eapen J; Mauro JC; Qian X; Diep P; Yip S J Chem Phys; 2009 Jun; 130(22):224504. PubMed ID: 19530777 [TBL] [Abstract][Full Text] [Related]
15. Transitions between inherent structures in water. Giovambattista N; Starr FW; Sciortino F; Buldyrev SV; Stanley HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041502. PubMed ID: 12005824 [TBL] [Abstract][Full Text] [Related]
16. On the role of inherent structures in glass-forming materials: I. The vitrification process. Tsalikis DG; Lempesis N; Boulougouris GC; Theodorou DN J Phys Chem B; 2008 Aug; 112(34):10619-27. PubMed ID: 18671423 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape. Banerjee S; Dasgupta C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213 [TBL] [Abstract][Full Text] [Related]
19. Two-Gaussian excitations model for the glass transition. Matyushov DV; Angell CA J Chem Phys; 2005 Jul; 123(3):34506. PubMed ID: 16080743 [TBL] [Abstract][Full Text] [Related]
20. Flow heterogeneities in supercooled liquids and glasses under shear. Golkia M; Shrivastav GP; Chaudhuri P; Horbach J Phys Rev E; 2020 Aug; 102(2-1):023002. PubMed ID: 32942371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]