These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21947901)

  • 21. Effects of confinement on supercooled tetrahedral liquids.
    Horstmann R; P Sanjon E; Drossel B; Vogel M
    J Chem Phys; 2019 Jun; 150(21):214704. PubMed ID: 31176331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathways for diffusion in the potential energy landscape of the network glass former SiO
    Niblett SP; Biedermann M; Wales DJ; de Souza VK
    J Chem Phys; 2017 Oct; 147(15):152726. PubMed ID: 29055343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crossovers in the dynamics of supercooled liquids probed by an amorphous wall.
    Hocky GM; Berthier L; Kob W; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052311. PubMed ID: 25353804
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tracer transport in attractive and repulsive supercooled liquids and glasses.
    Roberts RC; Poling-Skutvik R; Conrad JC; Palmer JC
    J Chem Phys; 2019 Nov; 151(19):194501. PubMed ID: 31757151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Observation of an isothermal glass transition in metallic glasses.
    Sun YT; Ding DW; Lu Z; Li MZ; Liu YH; Wang WH
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38258930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and relaxation of very stable glassy states of a simulated liquid.
    Jack RL; Hedges LO; Garrahan JP; Chandler D
    Phys Rev Lett; 2011 Dec; 107(27):275702. PubMed ID: 22243318
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mobility in driven monomeric and polymeric glasses.
    Rottler J
    Phys Rev E; 2018 Jul; 98(1-1):010501. PubMed ID: 30110863
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of fragility on enthalpy relaxation in glass.
    Mauro JC; Loucks RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021502. PubMed ID: 18850836
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory for Glassy Behavior of Supercooled Liquid Mixtures.
    Katira S; Garrahan JP; Mandadapu KK
    Phys Rev Lett; 2019 Sep; 123(10):100602. PubMed ID: 31573293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses.
    Yue Y; Angell CA
    Nature; 2004 Feb; 427(6976):717-20. PubMed ID: 14973480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supercooled liquids and the glass transition.
    Debenedetti PG; Stillinger FH
    Nature; 2001 Mar; 410(6825):259-67. PubMed ID: 11258381
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dynamical heterogeneity of the glassy state.
    Wisitsorasak A; Wolynes PG
    J Phys Chem B; 2014 Jul; 118(28):7835-47. PubMed ID: 24811573
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical phase transitions in supercooled liquids: interpreting measurements of dynamical activity.
    Fullerton CJ; Jack RL
    J Chem Phys; 2013 Jun; 138(22):224506. PubMed ID: 23781804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growing point-to-set length scales in Lennard-Jones glass-forming liquids.
    Li YW; Xu WS; Sun ZY
    J Chem Phys; 2014 Mar; 140(12):124502. PubMed ID: 24697454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material.
    Fan Y; Iwashita T; Egami T
    Nat Commun; 2017 May; 8():15417. PubMed ID: 28524879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Random energy model for dynamics in supercooled liquids: N dependence.
    Keyes T; Chowdhary J; Kim J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051110. PubMed ID: 12513470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.
    Saha D; Joshi YM; Bandyopadhyay R
    Soft Matter; 2014 May; 10(18):3292-300. PubMed ID: 24637644
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-learning metabasin escape algorithm for supercooled liquids.
    Cao P; Li M; Heugle RJ; Park HS; Lin X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016710. PubMed ID: 23005566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Perspective: Supercooled liquids and glasses.
    Ediger MD; Harrowell P
    J Chem Phys; 2012 Aug; 137(8):080901. PubMed ID: 22938210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of thermally activated plastic events in a flowing glass.
    Rodney D; Schuh C
    Phys Rev Lett; 2009 Jun; 102(23):235503. PubMed ID: 19658948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.