BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 21947957)

  • 1. Inactivation of a centromere during the formation of a translocation in maize.
    Gao Z; Fu S; Dong Q; Han F; Birchler JA
    Chromosome Res; 2011 Aug; 19(6):755-61. PubMed ID: 21947957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maize centromeric chromatin scales with changes in genome size.
    Wang N; Liu J; Ricci WA; Gent JI; Dawe RK
    Genetics; 2021 Apr; 217(4):. PubMed ID: 33857306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Expression and Chromatin Modifications Associated with Maize Centromeres.
    Zhao H; Zhu X; Wang K; Gent JI; Zhang W; Dawe RK; Jiang J
    G3 (Bethesda); 2015 Nov; 6(1):183-92. PubMed ID: 26564952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stable barley chromosomes without centromeric repeats.
    Nasuda S; Hudakova S; Schubert I; Houben A; Endo TR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(28):9842-7. PubMed ID: 15998740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heritable loss of replication control of a minichromosome derived from the B chromosome of maize.
    Masonbrink RE; Fu S; Han F; Birchler JA
    Genetics; 2013 Jan; 193(1):77-84. PubMed ID: 23114381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The holocentricity in the dioecious nutmeg (Myristica fragrans) is not based on major satellite repeats.
    Kuo YT; Kurian JG; Schubert V; Fuchs J; Melzer M; Muraleedharan A; Maruthachalam R; Houben A
    Chromosome Res; 2024 May; 32(2):8. PubMed ID: 38717688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absence of positive selection on centromeric histones in Tetrahymena suggests unsuppressed centromere: drive in lineages lacking male meiosis.
    Elde NC; Roach KC; Yao MC; Malik HS
    J Mol Evol; 2011 Jun; 72(5-6):510-20. PubMed ID: 21643829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyto-swapping in maize by haploid induction with a cenh3 mutant.
    Bortiri E; Selby R; Egger R; Tolhurst L; Dong S; Beam K; Meier K; Fabish J; Delaney D; Dunn M; Mcnamara D; Setliff K; Castro Miranda Lunny R; Gergen S; Dawe RK; Kelliher T
    Nat Plants; 2024 Apr; 10(4):567-571. PubMed ID: 38499777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.
    Realini MF; Poggio L; Cámara Hernández J; González GE
    PLoS One; 2018; 13(6):e0198398. PubMed ID: 29879173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Updating the maize karyotype by chromosome DNA sizing.
    Silva JC; Carvalho CR; Clarindo WR
    PLoS One; 2018; 13(1):e0190428. PubMed ID: 29293613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution.
    Marshall OJ; Chueh AC; Wong LH; Choo KH
    Am J Hum Genet; 2008 Feb; 82(2):261-82. PubMed ID: 18252209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Of maize and men, or peas and people: case histories to justify plants and other model systems.
    Baulcombe D
    Nat Med; 2008 Oct; 14(10):1046-9. PubMed ID: 18841146
    [No Abstract]   [Full Text] [Related]  

  • 13. Putting the brakes on centromere drive in Mimulus.
    Chang CH; Malik HS
    PLoS Genet; 2021 Apr; 17(4):e1009494. PubMed ID: 33886542
    [No Abstract]   [Full Text] [Related]  

  • 14. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions.
    Lysak MA
    Plant Cell; 2022 Jul; 34(7):2475-2491. PubMed ID: 35441689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba.
    Xuan Y; Ma B; Li D; Tian Y; Zeng Q; He N
    Hortic Res; 2022 Jan; 9():. PubMed ID: 35043186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosomal variations of Lycoris species revealed by FISH with rDNAs and centromeric histone H3 variant associated DNAs.
    Liu MS; Tseng SH; Tsai CC; Chen TC; Chung MC
    PLoS One; 2021; 16(9):e0258028. PubMed ID: 34591908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays).
    Douglas RN; Yang H; Zhang B; Chen C; Han F; Cheng J; Birchler JA
    Chromosome Res; 2021 Dec; 29(3-4):313-325. PubMed ID: 34406545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and physical localization of male-biased repetitive DNA sequences in
    Zhou J; Wang S; Yu L; Li N; Li S; Zhang Y; Qin R; Gao W; Deng C
    Comp Cytogenet; 2021; 15(2):101-118. PubMed ID: 33959234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize.
    Liu Y; Su H; Zhang J; Shi L; Liu Y; Zhang B; Bai H; Liang S; Gao Z; Birchler JA; Han F
    Plant Cell; 2020 Oct; 32(10):3113-3123. PubMed ID: 32817254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize.
    Liu Y; Su H; Zhang J; Liu Y; Feng C; Han F
    PLoS Biol; 2020 Jan; 18(1):e3000582. PubMed ID: 31995554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.