These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21948142)

  • 1. Degradation of 1,4-dioxane using advanced oxidation processes.
    Chitra S; Paramasivan K; Cheralathan M; Sinha PK
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):871-8. PubMed ID: 21948142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of 1,4-dioxane by advanced oxidation and biochemical process.
    Kim CG; Seo HJ; Lee BR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(4):599-611. PubMed ID: 16779934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light.
    Son HS; Im JK; Zoh KD
    Water Res; 2009 Mar; 43(5):1457-63. PubMed ID: 19131086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced sonochemical decomposition of 1,4-dioxane by ferrous iron.
    Beckett MA; Hua I
    Water Res; 2003 May; 37(10):2372-6. PubMed ID: 12727247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation kinetics of degradation of 1,4-dioxane in aqueous solution by H2O2/Fe(II) system.
    Ghosh P; Samanta AN; Ray S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(4):395-9. PubMed ID: 20390884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane.
    Sekar R; DiChristina TJ
    Environ Sci Technol; 2014 Nov; 48(21):12858-67. PubMed ID: 25313646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane.
    Lee CS; Venkatesan AK; Walker HW; Gobler CJ
    Water Res; 2020 Apr; 173():115534. PubMed ID: 32023496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of 1,4-dioxane and trichloroethene co-contamination by an activated binary persulfate-peroxide oxidation process.
    Yan N; Liu F; Liu B; Brusseau ML
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32088-32095. PubMed ID: 30218336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of antipyrine by UV, UV/H₂O₂ and UV/PS.
    Tan C; Gao N; Deng Y; Zhang Y; Sui M; Deng J; Zhou S
    J Hazard Mater; 2013 Sep; 260():1008-16. PubMed ID: 23892168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes.
    Coleman HM; Vimonses V; Leslie G; Amal R
    J Hazard Mater; 2007 Jul; 146(3):496-501. PubMed ID: 17574739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of pH on UV-based advanced oxidation technologies--1,4-dioxane degradation.
    Vescovi T; Coleman HM; Amal R
    J Hazard Mater; 2010 Oct; 182(1-3):75-9. PubMed ID: 20598439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of 1,4-dioxane in water with heat- and Fe(2+)-activated persulfate oxidation.
    Zhao L; Hou H; Fujii A; Hosomi M; Li F
    Environ Sci Pollut Res Int; 2014 Jun; 21(12):7457-65. PubMed ID: 24590601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low levels of iron enhance UV/H
    Ulliman SL; McKay G; Rosario-Ortiz FL; Linden KG
    Water Res; 2018 Mar; 130():234-242. PubMed ID: 29227872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photolysis of Mono- and Dichloramines in UV/Hydrogen Peroxide: Effects on 1,4-Dioxane Removal and Relevance in Water Reuse.
    Patton S; Romano M; Naddeo V; Ishida KP; Liu H
    Environ Sci Technol; 2018 Oct; 52(20):11720-11727. PubMed ID: 29791794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediating 1,4-dioxane-contaminated water with slow-release persulfate and zerovalent iron.
    Kambhu A; Gren M; Tang W; Comfort S; Harris CE
    Chemosphere; 2017 May; 175():170-177. PubMed ID: 28222371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the relationship between biodegradability enhancement and oxidation of 1,4-dioxane using ozone and hydrogen peroxide.
    Suh JH; Mohseni M
    Water Res; 2004 May; 38(10):2596-604. PubMed ID: 15159163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H₂O₂, O₃/H₂O₂ and O₃/activated carbon).
    Medellin-Castillo NA; Ocampo-Pérez R; Leyva-Ramos R; Sanchez-Polo M; Rivera-Utrilla J; Méndez-Díaz JD
    Sci Total Environ; 2013 Jan; 442():26-35. PubMed ID: 23178761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of benzoic acid from biomass burning in atmospheric waters.
    Santos PSM; Cardoso HB; Rocha-Santos TAP; Duarte AC
    Environ Pollut; 2019 Jan; 244():693-704. PubMed ID: 30384075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment.
    Uğurlu M; Kula I
    Environ Sci Pollut Res Int; 2007 Jul; 14(5):319-25. PubMed ID: 17722766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxone activated persulfate treatment of 1,4-dioxane in the presence of chlorinated solvent co-contaminants.
    Eberle D; Ball R; Boving TB
    Chemosphere; 2016 Feb; 144():728-35. PubMed ID: 26408980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.