These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2194836)

  • 21. DNA binding and bending by the transcription factors GAL4(62*) and GAL4(149*).
    Rodgers KK; Coleman JE
    Protein Sci; 1994 Apr; 3(4):608-19. PubMed ID: 8003979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergy of importin alpha recognition and DNA binding by the yeast transcriptional activator GAL4.
    Chan CK; Jans DA
    FEBS Lett; 1999 Nov; 462(1-2):221-4. PubMed ID: 10580123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner.
    Anderson SF; Steber CM; Esposito RE; Coleman JE
    Protein Sci; 1995 Sep; 4(9):1832-43. PubMed ID: 8528081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.
    Huh JR; Park JM; Kim M; Carlson BA; Hatfield DL; Lee BJ
    Biochem Biophys Res Commun; 1999 Mar; 256(1):45-51. PubMed ID: 10066420
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibody-promoted dimerization bypasses the regulation of DNA binding by the heme domain of the yeast transcriptional activator HAP1.
    Zhang L; Bermingham-McDonogh O; Turcotte B; Guarente L
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2851-5. PubMed ID: 8464899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperative DNA binding of the yeast transcriptional activator GAL4.
    Giniger E; Ptashne M
    Proc Natl Acad Sci U S A; 1988 Jan; 85(2):382-6. PubMed ID: 3124106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of the DNA-binding domain of Cd2-GAL4 from S. cerevisiae.
    Baleja JD; Marmorstein R; Harrison SC; Wagner G
    Nature; 1992 Apr; 356(6368):450-3. PubMed ID: 1557130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The acidic activation domains of the GCN4 and GAL4 proteins are not alpha helical but form beta sheets.
    Van Hoy M; Leuther KK; Kodadek T; Johnston SA
    Cell; 1993 Feb; 72(4):587-94. PubMed ID: 8440022
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic analysis of growth inhibition by GAL4-L kappa B-alpha in Saccharomyces cerevisiae.
    Morin PJ; Downs JA; Snodgrass AM; Gilmore TD
    Cell Growth Differ; 1995 Jul; 6(7):789-98. PubMed ID: 7547500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster.
    Marmorstein R; Harrison SC
    Genes Dev; 1994 Oct; 8(20):2504-12. PubMed ID: 7958913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The DNA-binding domain of the yeast Saccharomyces cerevisiae CYP1(HAP1) transcription factor possesses two zinc ions which are complexed in a zinc cluster.
    Timmerman JE; Guiard B; Shechter E; Delsuc MA; Lallemand JY; Gervais M
    Eur J Biochem; 1994 Oct; 225(2):593-9. PubMed ID: 7957173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GAL4-I kappa B alpha and GAL4-I kappa B gamma activate transcription by different mechanisms.
    Morin PJ; Subramanian GS; Gilmore TD
    Nucleic Acids Res; 1993 May; 21(9):2157-63. PubMed ID: 8502557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA recognition by GAL4: structure of a protein-DNA complex.
    Marmorstein R; Carey M; Ptashne M; Harrison SC
    Nature; 1992 Apr; 356(6368):408-14. PubMed ID: 1557122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR analysis of CYP1(HAP1) DNA binding domain-CYC1 upstream activation sequence interactions: recognition of a CGG trinucleotide and of an additional thymine 5 bp downstream by the zinc cluster and the N-terminal extremity of the protein.
    Vuidepot AL; Bontems F; Gervais M; Guiard B; Shechter E; Lallemand JY
    Nucleic Acids Res; 1997 Aug; 25(15):3042-50. PubMed ID: 9224603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient expression and Zn(II)-dependent structure of the DNA binding domain of the yeast GAL4 protein.
    Serikawa Y; Shirakawa M; Matsuo H; Kyogoku Y
    Protein Eng; 1990 Mar; 3(4):267-72. PubMed ID: 2111549
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange.
    Mau T; Baleja JD; Wagner G
    Protein Sci; 1992 Nov; 1(11):1403-12. PubMed ID: 1303761
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Purification and characterization of the yeast transcriptional activator GAL4.
    Parthun MR; Jaehning JA
    J Biol Chem; 1990 Jan; 265(1):209-13. PubMed ID: 2403556
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.
    Bird AJ; Zhao H; Luo H; Jensen LT; Srinivasan C; Evans-Galea M; Winge DR; Eide DJ
    EMBO J; 2000 Jul; 19(14):3704-13. PubMed ID: 10899124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How does the GAL4 transcription factor recognize the appropriate DNA binding sites in vivo?
    Kodadek T
    Cell Mol Biol Res; 1993; 39(4):355-60. PubMed ID: 8312971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutual exclusivity of DNA binding and nuclear localization signal recognition by the yeast transcription factor GAL4: implications for nonviral DNA delivery.
    Chan CK; Hübner S; Hu W; Jans DA
    Gene Ther; 1998 Sep; 5(9):1204-12. PubMed ID: 9930321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.