These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 21948418)
1. Selective capture of phosphopeptides by zirconium phosphonate-magnetic nanoparticles. Zhao L; Wu R; Zou H Methods Mol Biol; 2011; 790():215-22. PubMed ID: 21948418 [TBL] [Abstract][Full Text] [Related]
2. The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis. Zhao L; Wu R; Han G; Zhou H; Ren L; Tian R; Zou H J Am Soc Mass Spectrom; 2008 Aug; 19(8):1176-86. PubMed ID: 18502663 [TBL] [Abstract][Full Text] [Related]
3. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis. Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884 [TBL] [Abstract][Full Text] [Related]
4. Zirconium arsenate-modified magnetic nanoparticles: preparation, characterization and application to the enrichment of phosphopeptides. Li XS; Xu LD; Zhu GT; Yuan BF; Feng YQ Analyst; 2012 Feb; 137(4):959-67. PubMed ID: 22182930 [TBL] [Abstract][Full Text] [Related]
5. Preparation of mixed lanthanides-immobilized magnetic nanoparticles for selective enrichment and identification of phosphopeptides by MS. Zhai R; Jiao F; Feng D; Hao F; Li J; Li N; Yan H; Wang H; Jin Z; Zhang Y; Qian X Electrophoresis; 2014 Dec; 35(24):3470-8. PubMed ID: 24846711 [TBL] [Abstract][Full Text] [Related]
7. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039 [TBL] [Abstract][Full Text] [Related]
8. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. Li Y; Liu Y; Tang J; Lin H; Yao N; Shen X; Deng C; Yang P; Zhang X J Chromatogr A; 2007 Nov; 1172(1):57-71. PubMed ID: 17936290 [TBL] [Abstract][Full Text] [Related]
9. Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. Zhou H; Xu S; Ye M; Feng S; Pan C; Jiang X; Li X; Han G; Fu Y; Zou H J Proteome Res; 2006 Sep; 5(9):2431-7. PubMed ID: 16944956 [TBL] [Abstract][Full Text] [Related]
10. Zirconium arsenate-modified silica nanoparticles for specific capture of phosphopeptides and direct analysis by matrix-assisted laser desorption/ionization mass spectrometry. Zhao PX; Guo XF; Wang H; Qi CB; Xia HS; Zhang HS Anal Bioanal Chem; 2012 Jan; 402(3):1041-56. PubMed ID: 22105300 [TBL] [Abstract][Full Text] [Related]
11. Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva. Li Y; Liu L; Wu H; Deng C Anal Chim Acta; 2019 Nov; 1079():111-119. PubMed ID: 31387701 [TBL] [Abstract][Full Text] [Related]
12. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
13. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353 [TBL] [Abstract][Full Text] [Related]
14. Highly specific capture and direct MALDI MS analysis of phosphopeptides by zirconium phosphonate on self-assembled monolayers. Hoang T; Roth U; Kowalewski K; Belisle C; Steinert K; Karas M Anal Chem; 2010 Jan; 82(1):219-28. PubMed ID: 19968246 [TBL] [Abstract][Full Text] [Related]
15. Multifunctional ZrO(2) nanoparticles and ZrO(2)-SiO (2) nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Kailasa SK; Wu HF Anal Bioanal Chem; 2010 Feb; 396(3):1115-25. PubMed ID: 20091153 [TBL] [Abstract][Full Text] [Related]
16. Development of core-shell structure Fe3O4@Ta2O5 microspheres for selective enrichment of phosphopeptides for mass spectrometry analysis. Qi D; Lu J; Deng C; Zhang X J Chromatogr A; 2009 Jul; 1216(29):5533-9. PubMed ID: 19515374 [TBL] [Abstract][Full Text] [Related]
17. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Lin H; Chen H; Shao X; Deng C Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348 [TBL] [Abstract][Full Text] [Related]
18. Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Yao J; Sun N; Wang J; Xie Y; Deng C; Zhang X Proteomics; 2017 Apr; 17(8):. PubMed ID: 28160437 [TBL] [Abstract][Full Text] [Related]
19. Highly selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS. Jiang D; Song N; Li X; Ma J; Jia Q Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28722797 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis of zirconium phosphonate-functionalized magnetic mesoporous silica microspheres designed for highly selective enrichment of phosphopeptides. Lu J; Li Y; Deng C Nanoscale; 2011 Mar; 3(3):1225-33. PubMed ID: 21264407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]