These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 21948418)
21. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Li Y; Leng T; Lin H; Deng C; Xu X; Yao N; Yang P; Zhang X J Proteome Res; 2007 Nov; 6(11):4498-510. PubMed ID: 17900103 [TBL] [Abstract][Full Text] [Related]
22. Titanium(IV)-functionalized zirconium-organic frameworks as dual-metal affinity probe for recognition of endogenous phosphopeptides prior to mass spectrometric quantification. Zheng H; Wang J; Gao M; Zhang X Mikrochim Acta; 2019 Nov; 186(12):829. PubMed ID: 31754799 [TBL] [Abstract][Full Text] [Related]
23. Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity. Zhang L; Xu J; Sun L; Ma J; Yang K; Liang Z; Zhang L; Zhang Y Anal Bioanal Chem; 2011 Apr; 399(10):3399-405. PubMed ID: 21258783 [TBL] [Abstract][Full Text] [Related]
24. Enrichment of Phosphopeptides Based on Zirconium Phthalocyanine-Modified Magnetic Nanoparticles. Jiang D; Wu S; Li Y; Qi R; Liu J ACS Biomater Sci Eng; 2024 Apr; 10(4):2143-2150. PubMed ID: 38442336 [TBL] [Abstract][Full Text] [Related]
25. Development of Gd Jiang D; Li X; Ma J; Jia Q Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825 [TBL] [Abstract][Full Text] [Related]
26. Facile Preparation of Core-Shell Magnetic Metal-Organic Framework Nanoparticles for the Selective Capture of Phosphopeptides. Chen Y; Xiong Z; Peng L; Gan Y; Zhao Y; Shen J; Qian J; Zhang L; Zhang W ACS Appl Mater Interfaces; 2015 Aug; 7(30):16338-47. PubMed ID: 26156207 [TBL] [Abstract][Full Text] [Related]
27. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Yao J; Sun N; Deng C; Zhang X Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411 [TBL] [Abstract][Full Text] [Related]
28. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. Lo CY; Chen WY; Chen CT; Chen YC J Proteome Res; 2007 Feb; 6(2):887-93. PubMed ID: 17269746 [TBL] [Abstract][Full Text] [Related]
29. Immobilized metal affinity chromatography/reversed-phase enrichment of phosphopeptides and analysis by CID/ETD tandem mass spectrometry. Navajas R; Paradela A; Albar JP Methods Mol Biol; 2011; 681():337-48. PubMed ID: 20978974 [TBL] [Abstract][Full Text] [Related]
30. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. Pan C; Ye M; Liu Y; Feng S; Jiang X; Han G; Zhu J; Zou H J Proteome Res; 2006 Nov; 5(11):3114-24. PubMed ID: 17081063 [TBL] [Abstract][Full Text] [Related]
31. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells. Yu QW; Li XS; Xiao Y; Guo L; Zhang F; Cai Q; Feng YQ; Yuan BF; Wang Y J Chromatogr A; 2014 Oct; 1365():54-60. PubMed ID: 25262027 [TBL] [Abstract][Full Text] [Related]
32. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Kweon HK; Håkansson K Anal Chem; 2006 Mar; 78(6):1743-9. PubMed ID: 16536406 [TBL] [Abstract][Full Text] [Related]
33. Phytic acid functionalized Fe Zhang K; Hu D; Deng S; Han M; Wang X; Liu H; Liu Y; Xie M Mikrochim Acta; 2019 Jan; 186(2):68. PubMed ID: 30627783 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of bifunctional TiO2@SiO2-B(OH)2@Fe3O4@TiO2 sandwich-like nanosheets for sequential selective enrichment of phosphopeptides and glycopeptides for mass spectrometric analysis. Xu D; Gao M; Deng C; Zhang X Anal Bioanal Chem; 2016 Aug; 408(20):5489-97. PubMed ID: 27236315 [TBL] [Abstract][Full Text] [Related]
35. Efficient enrichment of phosphopeptides by magnetic TiO₂-coated carbon-encapsulated iron nanoparticles. Zeng YY; Chen HJ; Shiau KJ; Hung SU; Wang YS; Wu CC Proteomics; 2012 Feb; 12(3):380-90. PubMed ID: 22144111 [TBL] [Abstract][Full Text] [Related]
36. In situ enrichment of phosphopeptides on MALDI plates functionalized by reactive landing of zirconium(IV)-n-propoxide ions. Blacken GR; Volný M; Vaisar T; Sadílek M; Turecek F Anal Chem; 2007 Jul; 79(14):5449-56. PubMed ID: 17569507 [TBL] [Abstract][Full Text] [Related]
37. Phosphate-functionalized magnetic microspheres for immobilization of Zr(4+) ions for selective enrichment of the phosphopeptides. Qi D; Mao Y; Lu J; Deng C; Zhang X J Chromatogr A; 2010 Apr; 1217(16):2606-17. PubMed ID: 19942223 [TBL] [Abstract][Full Text] [Related]
38. Analysis of protein phosphorylation by monolithic extraction columns based on poly(divinylbenzene) containing embedded titanium dioxide and zirconium dioxide nano-powders. Rainer M; Sonderegger H; Bakry R; Huck CW; Morandell S; Huber LA; Gjerde DT; Bonn GK Proteomics; 2008 Nov; 8(21):4593-602. PubMed ID: 18837466 [TBL] [Abstract][Full Text] [Related]
39. Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides. Sun Y; Wang HF J Chromatogr A; 2013 Nov; 1316():62-8. PubMed ID: 24128437 [TBL] [Abstract][Full Text] [Related]
40. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Chen CT; Wang LY; Ho YP Anal Bioanal Chem; 2011 Mar; 399(8):2795-806. PubMed ID: 21249345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]