These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21948630)

  • 1. Understanding the fast pyrolysis of lignin.
    Patwardhan PR; Brown RC; Shanks BH
    ChemSusChem; 2011 Nov; 4(11):1629-36. PubMed ID: 21948630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Product distribution from the fast pyrolysis of hemicellulose.
    Patwardhan PR; Brown RC; Shanks BH
    ChemSusChem; 2011 May; 4(5):636-43. PubMed ID: 21548106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing primary and secondary reactions of cellulose pyrolysis.
    Patwardhan PR; Dalluge DL; Shanks BH; Brown RC
    Bioresour Technol; 2011 Apr; 102(8):5265-9. PubMed ID: 21354786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of inorganic salts on the primary pyrolysis products of cellulose.
    Patwardhan PR; Satrio JA; Brown RC; Shanks BH
    Bioresour Technol; 2010 Jun; 101(12):4646-55. PubMed ID: 20171877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres.
    Zhang H; Xiao R; Wang D; He G; Shao S; Zhang J; Zhong Z
    Bioresour Technol; 2011 Mar; 102(5):4258-64. PubMed ID: 21232946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study of corn straw pyrolysis: comparison of two different three-pseudocomponent models.
    Li Z; Zhao W; Meng B; Liu C; Zhu Q; Zhao G
    Bioresour Technol; 2008 Nov; 99(16):7616-22. PubMed ID: 18343656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-pyrolysis of lignin and plastics using red clay as catalyst in a micro-pyrolyzer.
    Patil V; Adhikari S; Cross P
    Bioresour Technol; 2018 Dec; 270():311-319. PubMed ID: 30241064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products.
    Yang X; Ma F; Yu H; Zhang X; Chen S
    Bioresour Technol; 2011 Feb; 102(3):3498-503. PubMed ID: 21146404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and simultaneous determination of representative byproducts in a lignocellulosic hydrolysate of corn stover via gas chromatography-mass spectrometry with a Deans switch.
    Zheng R; Zhang H; Zhao J; Lei M; Huang H
    J Chromatogr A; 2011 Aug; 1218(31):5319-27. PubMed ID: 21722910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of N
    Wulandari YR; Chen SS; Hermosa GC; Hossain MSA; Yamauchi Y; Ahamad T; Alshehri SM; Wu KCW; Wu HS
    Environ Res; 2020 Nov; 190():109976. PubMed ID: 32750555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of fast-growing aquatic biomass -Lemna minor (duckweed): Characterization of pyrolysis products.
    Muradov N; Fidalgo B; Gujar AC; T-Raissi A
    Bioresour Technol; 2010 Nov; 101(21):8424-8. PubMed ID: 20598878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.
    Schnitzer MI; Monreal CM; Jandl G
    J Environ Sci Health B; 2008 Jan; 43(1):81-95. PubMed ID: 18161578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.
    Kim KH; Bai X; Cady S; Gable P; Brown RC
    ChemSusChem; 2015 Mar; 8(5):894-900. PubMed ID: 25677712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Insights into the Fast Pyrolysis of Extracted Cellulose, Hemicelluloses, and Lignin.
    Carrier M; Windt M; Ziegler B; Appelt J; Saake B; Meier D; Bridgwater A
    ChemSusChem; 2017 Aug; 10(16):3212-3224. PubMed ID: 28644517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of fast pyrolysis of lignin: studying model compounds.
    Custodis VB; Hemberger P; Ma Z; van Bokhoven JA
    J Phys Chem B; 2014 Jul; 118(29):8524-31. PubMed ID: 24937704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of Lignin and Its Structural Features in Plant Biomass Using
    van Erven G; de Visser R; Merkx DWH; Strolenberg W; de Gijsel P; Gruppen H; Kabel MA
    Anal Chem; 2017 Oct; 89(20):10907-10916. PubMed ID: 28926698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.
    Shah A; Darr MJ; Dalluge D; Medic D; Webster K; Brown RC
    Bioresour Technol; 2012 Dec; 125():348-52. PubMed ID: 23069609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.