BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 21948711)

  • 1. Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development.
    Nakajo N; Deno YK; Ueno H; Kenmochi C; Shimuta K; Sagata N
    Int J Dev Biol; 2011; 55(6):627-32. PubMed ID: 21948711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis.
    Kim SH; Li C; Maller JL
    Dev Biol; 1999 Aug; 212(2):381-91. PubMed ID: 10433828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases.
    Ferguson AM; White LS; Donovan PJ; Piwnica-Worms H
    Mol Cell Biol; 2005 Apr; 25(7):2853-60. PubMed ID: 15767688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FoxM1-driven cell division is required for neuronal differentiation in early Xenopus embryos.
    Ueno H; Nakajo N; Watanabe M; Isoda M; Sagata N
    Development; 2008 Jun; 135(11):2023-30. PubMed ID: 18469223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of three synuclein genes in Xenopus laevis.
    Wang C; Liu Y; Chan WY; Chan SO; Grunz H; Zhao H
    Dev Dyn; 2011 Aug; 240(8):2028-33. PubMed ID: 21761485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wee1 kinase alters cyclin E/Cdk2 and promotes apoptosis during the early embryonic development of Xenopus laevis.
    Wroble BN; Finkielstein CV; Sible JC
    BMC Dev Biol; 2007 Oct; 7():119. PubMed ID: 17961226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of wdr68 gene in embryonic development of Xenopus laevis.
    Bonano M; Martín E; Moreno Ruiz Holgado MM; Silenzi Usandivaras GM; Ruiz De Bigliardo G; Aybar MJ
    Gene Expr Patterns; 2018 Dec; 30():55-63. PubMed ID: 30125741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of Myt1 kinase in the G2 phase of the first cell cycle in Xenopus laevis.
    Yoshitome S; Aiba Y; Yuge M; Furuno N; Watanabe M; Nakajo N
    Biochem Biophys Res Commun; 2019 Jul; 515(1):139-144. PubMed ID: 31128913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple isoforms of CDC25 oppose ATM activity to maintain cell proliferation during vertebrate development.
    Verduzco D; Dovey JS; Shukla AA; Kodym E; Skaug BA; Amatruda JF
    Mol Cancer Res; 2012 Nov; 10(11):1451-61. PubMed ID: 22986406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of arid5b isoforms in Xenopus laevis pronephros.
    Le Bouffant R; Cunin AC; Buisson I; Cartry J; Riou JF; Umbhauer M
    Int J Dev Biol; 2014; 58(5):363-8. PubMed ID: 25354457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and expression of ventrally associated leucine-zipper (VAL) in Xenopus embryo.
    Saito Y; Takahashi Y; Izutsu Y; Maéno M
    Int J Dev Biol; 2010; 54(1):203-8. PubMed ID: 19876842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism.
    Uto K; Inoue D; Shimuta K; Nakajo N; Sagata N
    EMBO J; 2004 Aug; 23(16):3386-96. PubMed ID: 15272308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two Hoxc6 transcripts are differentially expressed and regulate primary neurogenesis in Xenopus laevis.
    Bardine N; Donow C; Korte B; Durston AJ; Knöchel W; Wacker SA
    Dev Dyn; 2009 Mar; 238(3):755-65. PubMed ID: 19235717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two CDC25 homologues are differentially expressed during mouse development.
    Wickramasinghe D; Becker S; Ernst MK; Resnick JL; Centanni JM; Tessarollo L; Grabel LB; Donovan PJ
    Development; 1995 Jul; 121(7):2047-56. PubMed ID: 7635051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of Xenopus Cdc25C at Ser285 interferes with ability to activate a DNA damage replication checkpoint in pre-midblastula embryos.
    Bulavin DV; Demidenko ZN; Phillips C; Moody SA; Fornace AJ
    Cell Cycle; 2003; 2(3):263-6. PubMed ID: 12775939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase.
    Mils V; Baldin V; Goubin F; Pinta I; Papin C; Waye M; Eychene A; Ducommun B
    Oncogene; 2000 Mar; 19(10):1257-65. PubMed ID: 10713667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Cdc25C by ERK-MAP kinases during the G2/M transition.
    Wang R; He G; Nelman-Gonzalez M; Ashorn CL; Gallick GE; Stukenberg PT; Kirschner MW; Kuang J
    Cell; 2007 Mar; 128(6):1119-32. PubMed ID: 17382881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc25B activity is regulated by 14-3-3.
    Forrest A; Gabrielli B
    Oncogene; 2001 Jul; 20(32):4393-401. PubMed ID: 11466620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.